Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Normal chromosome ends elicit a limited DNA damage response

24.11.2005


Researchers at the Salk Institute for Biological Studies discovered that cells co-opted the machinery that usually repairs broken strands of DNA to protect the integrity of chromosomes. This finding solves for the first time an important question that has long puzzled scientists.



The natural ends of chromosomes look just like broken strands of DNA that a cell’s repair machinery is designed to fix. But mending chromosome ends, or telomeres, would set the stage for the development of cancer in successive generation of cells.

To prevent the cell’s DNA repair machinery from confusing telomeres with broken strands of DNA that need to be repaired, the tips of chromosomes are tucked in and shielded by a phalanx of proteins, forming a protective "cap".


Ironically, to form this protective structure at the end of chromosomes, nature solicited help from the very same repair machinery whose misguided repair attempts the cap is supposed to hold at bay, reports the Salk team, led by Jan Karlseder, in the current issue of Molecular Cell.

Scientists had long surmised that the protective telomere-protein complex had to unravel when enzymes need to gain access in order to copy the chromosome’s DNA in preparation for cell division. And if so, they wondered, why didn’t the presumably exposed chromosome ends trigger a DNA damage response?

Turns out they do, at least to a limited extend.

"During a small window right after DNA replication, when the cell gets ready for cell division, chromosome ends are exposed," says research fellow and first author Ramiro Verdun who emphasizes that, "it would be very unhealthy for the cell if it happened at any other time."

In addition, Verdun and his colleagues found that several well-known members of the DNA damage response machinery – recruited by the now unprotected telomeres - congregate at the tips of chromosomes.

"We believe that the localization of repair proteins to chromosome ends, and detection of telomeres as damage at this precise time are necessary to trigger the re-formation of a protective telomeric structure," says Karlseder, an assistant professor in the Regulatory Biology Laboratory.

In contrast to damaged strands of DNA, they hypothesize, the repair process never gets fully underway at telomeres. Instead, the very tips of the chromosomes are looped back, tucked in and covered with telomeric proteins.

"The cell tries to fix everything to make sure that the genetic information is safe and complete for the next generation of cells," says Verdun. "But in the case of healthy chromosome tips or telomeres, repair would have disastrous consequences," he adds.

Repairing telomeres would randomly fuse whole chromosomes end-to-end. During the next cell division the sorting mechanism, which ensures that each daughter cell receives a full complement of chromosomes would inevitably rip the fused chromosomes apart.

"Such fusion breakage cycles scramble the genome over time, and cause genome instability, which is a hallmark of cancer cells," explains Karlseder. "This demonstrates the importance of telomeres in preserving genome integrity and preventing cancer development."

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>