Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deleted genes help predict outcome in a children’s cancer

24.11.2005


Genetic clues guide customized treatment for neuroblastoma



A new study reports that a loss of genes on chromosome 1 or chromosome 11 raises the risk of death from the children’s cancer neuroblastoma, even when other indicators seem to point to a lower-risk form of the disease. This research finding will help guide physicians to the most appropriate treatment for the cancer, which strikes the peripheral nervous system. The approach used may also be applied to customizing care for other cancers.

"Identifying more accurate risk levels of this cancer allows doctors to treat aggressive types of the cancer appropriately, while not subjecting children with lower-risk cancer to overtreatment," said study leader John Maris, M.D., of The Children’s Hospital of Philadelphia. The study from the Children’s Oncology Group, a cooperative research organization of pediatric cancer centers, appears in the November 24 New England Journal of Medicine.


The research team analyzed tumor samples from 915 children with neuroblastoma. Neuroblastoma is the most common cancer in infants, accounting for 10 percent of all pediatric cancers, but its course is not easily predictable. Often occurring as a solid tumor in a child’s abdomen or chest, some cases spontaneously resolve even without surgery, while others are particularly aggressive -- resisting initial therapy, or causing a relapse. The more accurately physicians can identify a patient’s risk level at the initial evaluation, the better they can customize treatment to each child.

Turning the Tide of Pediatric Cancers Using details of tumor biology to help classify a patient’s prognosis – a process called risk stratification – has received a large boost from the flood of genetic data from the National Genome Project. At the same time, researchers are translating knowledge of molecular events and biological processes into experimental cancer treatments.

As with all science, findings such as the current study of chromosome deletions in neuroblastoma are incremental advances. Those advances occur against the backdrop of a remarkable turnaround: in one generation, survival rates for pediatric cancer have risen from roughly 25 percent in the 1970s to nearly 80 percent today.

One major reason for the dramatic progress in pediatric survival rates is the fact that, over the years, high percentages of children with cancer have participated in clinical trials of new treatments. Today, as researchers work to counteract the most refractory and aggressive cancers, the new treatments are often targeted therapies-- specific agents that attack cancer cells while sparing healthy cells. One such treatment used at Children’s Hospital is a compound called MIBG that selectively concentrates in neuroblastoma cells. When bound to a radioactive isotope of iodine and delivered by an I.V. line, the radioactive package kills cancer cells, with low toxicity to healthy tissue.

"These treatments are not cures, but they are bringing us closer to controlling neuroblastoma," says Dr. Maris. "Our goal is to successfully treat the cases that have learned to resist therapy."

Minding P’s and Q’s in Two Chromosomes Guides Treatment Decisions The current study builds on a foundation of decades of research into neuroblastoma at The Children’s Hospital of Philadelphia and other pediatric cancer centers. Pediatric oncologists have known for some time that amplification, an abnormal increase in the number of copies, of a cancer-causing gene called MYCN heralds a high-risk, aggressive form of neuroblastoma. However, some 60 percent of high-risk neuroblastoma tumors do not show MYCN amplification, suggesting that other biological pathways are operating.

Based on previous studies by Dr. Maris and other researchers that identified abnormalities on chromosomes 1 and 11 as contributing to high-risk neuroblastoma, the current research team analyzed gene defects in a large series of neuroblastoma tumors. "We found that loss of genetic material on chromosome bands 1p36 and 11q23 was strongly linked to high-risk neuroblastoma," he said. He added that the survival rate was worse when the loss of material was unbalanced on chromosome 11, occurring on the chromosome’s "q" arm but not on its shorter "p" arm.

Scientists call this deletion of one copy of a chromosome "loss of heterozygosity" (LOH). The unbalanced 11q LOH and the 1p36 LOH were independent markers of worse outcome for patients, regardless of other prognostic clues. For instance, unbalanced 11q LOH occurs almost always in tumors not showing amplified copies of the MYCN gene.

"Children known to have MYCN amplification are more likely to already be receiving the most aggressive therapy," said Dr. Maris. "However, it is important to look for 1p36 LOH and unbalanced 11q LOH in children with localized disease without MYCN amplification. Patients having one or both of these deletions may benefit from more intensive early treatment such as chemotherapy. If we can correctly detect risk factors at diagnosis, we can tailor their treatment accordingly."

Based on these findings, the Children’s Oncology Group plans to add the status of chromosome arms 1p and 11q to its list of prognostic markers in evaluating children with neuroblastoma. This information will be incorporated into future clinical trials, as researchers analyze new treatments for this pediatric cancer. "As we continue to develop better treatments, we hope to combine those treatments with more refined diagnoses, so we can identify and then treat high-risk cancers earlier, before they can progress or relapse," says Dr. Maris.

The research team will be conducting further work on these particular genetic abnormalities. "Our hope is to identify one or more genes on chromosome arm 11q that are involved in the development of aggressive neuroblastoma, and then use those specific genes as targets for therapy," said lead author Edward F. Attiyeh, M.D., also of The Children’s Hospital of Philadelphia.

The researchers also look toward broader implications in their research. "What we have achieved in this pediatric cancer is applicable to other cancers," said Dr. Maris. "This example of molecular medicine is a step in the direction of using powerful genomic technologies to individualizing care."

Rachel Salis-Silverman | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>