Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford study of sea squirt provides clue to human immune system

24.11.2005


"You can eat your relatives but not your friends," could be the off-kilter credo of a tiny marine invertebrate called a sea squirt that can physically merge with, and parasitize, its own kin. The trigger for this unseemly behavior has now been traced to a single gene, isolated by researchers at the Stanford University School of Medicine. That gene also points to a common origin with the vertebrate immune system, far back in animal evolution, potentially shedding light on the development of our own immune system.



The sea squirt with the questionable philosophy is Botryllus schlosseri, a colonial animal that looks deceptively like a small flower. Each of its apparent petals is actually a separate, though genetically identical, organism, linked to the others by a common blood vessel. Ringing the tiny petals are even tinier tentacle-like ampullae, the sensing organs that evaluate other sea squirts, determining who’s related and who isn’t.

If two adjacent squirts aren’t related, their respective ampullae blacken and shrivel upon contact. But when the squirts are related, they begin to physically fuse together. Thus, the ampullae had to be able to sense genetic similarity among sea squirts, said Anthony De Tomaso, PhD, researcher in pathology and first author of a paper on the subject in the Nov. 24 issue of Nature. "We were looking for the genes which control how an individual can distinguish self from non-self," he said.


Fusing together benefits the filter-feeding squirts because they live in high-density areas such as marinas, where competition among sea life is fierce. Because adult squirts are sedentary, if the area around them is already occupied, they can only increase their feeding area by fusing.

The downside of fusing is that one sea squirt can parasitize the other, essentially taking over its body by means of mobile stem cells, which transplant themselves between the fused individuals through the shared circulatory system. Eventually one set of stem cells overpowers the other, going on to replace the tissues of the loser. It was the fusing process, body-snatching tendencies notwithstanding, that attracted De Tomaso’s interest.

De Tomaso and senior author Irving Weissman, MD, the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine, knew that the sea squirts’ ability to sense who was fusible appeared to bear strong similarities to certain cells in our own immune system, called natural killer cells. Like Botryllus, natural killer cells only recognize genetically similar material. Anything they don’t recognize, they attack, as often occurs in bone marrow transplants.

Through a long process of sorting and testing, De Tomaso’s team isolated the controlling gene. "We found a gene which by itself predicts whether two colonies will fuse or reject," he said, adding, "Now we have the first piece of the puzzle of understanding how this happens on a molecular level."

The gene is an immunoglobulin, the type of gene that makes up the entire human immune system. "This is the first time we’ve seen a connection between these two systems," said De Tomaso. Until now, no one had demonstrated any concrete similarity between the vertebrate and invertebrate immune systems. The ramifications of the finding may shed light not only on the evolution of our immune system, but also on how we might better control some aspects of it, such as our natural killer cells.

"If you could teach those natural killer cells to be tolerant, you could transplant bone marrow between any two people, a huge first step in curing diseases like leukemia," said De Tomaso. Learning how to manipulate our immune systems would also have major ramifications for treating autoimmune diseases such as multiple sclerosis, which essentially represents a breakdown of recognition by the immune system, attacking the body it should be defending.

De Tomaso’s team is already working on the next step in sorting out the workings of Botryllus’ immune system-deciphering the actual molecular mechanism by which the sea squirt ascertains which of its neighbors shares its urge to merge, in spite of the risks.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>