Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford study of sea squirt provides clue to human immune system

24.11.2005


"You can eat your relatives but not your friends," could be the off-kilter credo of a tiny marine invertebrate called a sea squirt that can physically merge with, and parasitize, its own kin. The trigger for this unseemly behavior has now been traced to a single gene, isolated by researchers at the Stanford University School of Medicine. That gene also points to a common origin with the vertebrate immune system, far back in animal evolution, potentially shedding light on the development of our own immune system.



The sea squirt with the questionable philosophy is Botryllus schlosseri, a colonial animal that looks deceptively like a small flower. Each of its apparent petals is actually a separate, though genetically identical, organism, linked to the others by a common blood vessel. Ringing the tiny petals are even tinier tentacle-like ampullae, the sensing organs that evaluate other sea squirts, determining who’s related and who isn’t.

If two adjacent squirts aren’t related, their respective ampullae blacken and shrivel upon contact. But when the squirts are related, they begin to physically fuse together. Thus, the ampullae had to be able to sense genetic similarity among sea squirts, said Anthony De Tomaso, PhD, researcher in pathology and first author of a paper on the subject in the Nov. 24 issue of Nature. "We were looking for the genes which control how an individual can distinguish self from non-self," he said.


Fusing together benefits the filter-feeding squirts because they live in high-density areas such as marinas, where competition among sea life is fierce. Because adult squirts are sedentary, if the area around them is already occupied, they can only increase their feeding area by fusing.

The downside of fusing is that one sea squirt can parasitize the other, essentially taking over its body by means of mobile stem cells, which transplant themselves between the fused individuals through the shared circulatory system. Eventually one set of stem cells overpowers the other, going on to replace the tissues of the loser. It was the fusing process, body-snatching tendencies notwithstanding, that attracted De Tomaso’s interest.

De Tomaso and senior author Irving Weissman, MD, the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine, knew that the sea squirts’ ability to sense who was fusible appeared to bear strong similarities to certain cells in our own immune system, called natural killer cells. Like Botryllus, natural killer cells only recognize genetically similar material. Anything they don’t recognize, they attack, as often occurs in bone marrow transplants.

Through a long process of sorting and testing, De Tomaso’s team isolated the controlling gene. "We found a gene which by itself predicts whether two colonies will fuse or reject," he said, adding, "Now we have the first piece of the puzzle of understanding how this happens on a molecular level."

The gene is an immunoglobulin, the type of gene that makes up the entire human immune system. "This is the first time we’ve seen a connection between these two systems," said De Tomaso. Until now, no one had demonstrated any concrete similarity between the vertebrate and invertebrate immune systems. The ramifications of the finding may shed light not only on the evolution of our immune system, but also on how we might better control some aspects of it, such as our natural killer cells.

"If you could teach those natural killer cells to be tolerant, you could transplant bone marrow between any two people, a huge first step in curing diseases like leukemia," said De Tomaso. Learning how to manipulate our immune systems would also have major ramifications for treating autoimmune diseases such as multiple sclerosis, which essentially represents a breakdown of recognition by the immune system, attacking the body it should be defending.

De Tomaso’s team is already working on the next step in sorting out the workings of Botryllus’ immune system-deciphering the actual molecular mechanism by which the sea squirt ascertains which of its neighbors shares its urge to merge, in spite of the risks.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>