Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford study of sea squirt provides clue to human immune system

24.11.2005


"You can eat your relatives but not your friends," could be the off-kilter credo of a tiny marine invertebrate called a sea squirt that can physically merge with, and parasitize, its own kin. The trigger for this unseemly behavior has now been traced to a single gene, isolated by researchers at the Stanford University School of Medicine. That gene also points to a common origin with the vertebrate immune system, far back in animal evolution, potentially shedding light on the development of our own immune system.



The sea squirt with the questionable philosophy is Botryllus schlosseri, a colonial animal that looks deceptively like a small flower. Each of its apparent petals is actually a separate, though genetically identical, organism, linked to the others by a common blood vessel. Ringing the tiny petals are even tinier tentacle-like ampullae, the sensing organs that evaluate other sea squirts, determining who’s related and who isn’t.

If two adjacent squirts aren’t related, their respective ampullae blacken and shrivel upon contact. But when the squirts are related, they begin to physically fuse together. Thus, the ampullae had to be able to sense genetic similarity among sea squirts, said Anthony De Tomaso, PhD, researcher in pathology and first author of a paper on the subject in the Nov. 24 issue of Nature. "We were looking for the genes which control how an individual can distinguish self from non-self," he said.


Fusing together benefits the filter-feeding squirts because they live in high-density areas such as marinas, where competition among sea life is fierce. Because adult squirts are sedentary, if the area around them is already occupied, they can only increase their feeding area by fusing.

The downside of fusing is that one sea squirt can parasitize the other, essentially taking over its body by means of mobile stem cells, which transplant themselves between the fused individuals through the shared circulatory system. Eventually one set of stem cells overpowers the other, going on to replace the tissues of the loser. It was the fusing process, body-snatching tendencies notwithstanding, that attracted De Tomaso’s interest.

De Tomaso and senior author Irving Weissman, MD, the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine, knew that the sea squirts’ ability to sense who was fusible appeared to bear strong similarities to certain cells in our own immune system, called natural killer cells. Like Botryllus, natural killer cells only recognize genetically similar material. Anything they don’t recognize, they attack, as often occurs in bone marrow transplants.

Through a long process of sorting and testing, De Tomaso’s team isolated the controlling gene. "We found a gene which by itself predicts whether two colonies will fuse or reject," he said, adding, "Now we have the first piece of the puzzle of understanding how this happens on a molecular level."

The gene is an immunoglobulin, the type of gene that makes up the entire human immune system. "This is the first time we’ve seen a connection between these two systems," said De Tomaso. Until now, no one had demonstrated any concrete similarity between the vertebrate and invertebrate immune systems. The ramifications of the finding may shed light not only on the evolution of our immune system, but also on how we might better control some aspects of it, such as our natural killer cells.

"If you could teach those natural killer cells to be tolerant, you could transplant bone marrow between any two people, a huge first step in curing diseases like leukemia," said De Tomaso. Learning how to manipulate our immune systems would also have major ramifications for treating autoimmune diseases such as multiple sclerosis, which essentially represents a breakdown of recognition by the immune system, attacking the body it should be defending.

De Tomaso’s team is already working on the next step in sorting out the workings of Botryllus’ immune system-deciphering the actual molecular mechanism by which the sea squirt ascertains which of its neighbors shares its urge to merge, in spite of the risks.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>