Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford study of sea squirt provides clue to human immune system

24.11.2005


"You can eat your relatives but not your friends," could be the off-kilter credo of a tiny marine invertebrate called a sea squirt that can physically merge with, and parasitize, its own kin. The trigger for this unseemly behavior has now been traced to a single gene, isolated by researchers at the Stanford University School of Medicine. That gene also points to a common origin with the vertebrate immune system, far back in animal evolution, potentially shedding light on the development of our own immune system.



The sea squirt with the questionable philosophy is Botryllus schlosseri, a colonial animal that looks deceptively like a small flower. Each of its apparent petals is actually a separate, though genetically identical, organism, linked to the others by a common blood vessel. Ringing the tiny petals are even tinier tentacle-like ampullae, the sensing organs that evaluate other sea squirts, determining who’s related and who isn’t.

If two adjacent squirts aren’t related, their respective ampullae blacken and shrivel upon contact. But when the squirts are related, they begin to physically fuse together. Thus, the ampullae had to be able to sense genetic similarity among sea squirts, said Anthony De Tomaso, PhD, researcher in pathology and first author of a paper on the subject in the Nov. 24 issue of Nature. "We were looking for the genes which control how an individual can distinguish self from non-self," he said.


Fusing together benefits the filter-feeding squirts because they live in high-density areas such as marinas, where competition among sea life is fierce. Because adult squirts are sedentary, if the area around them is already occupied, they can only increase their feeding area by fusing.

The downside of fusing is that one sea squirt can parasitize the other, essentially taking over its body by means of mobile stem cells, which transplant themselves between the fused individuals through the shared circulatory system. Eventually one set of stem cells overpowers the other, going on to replace the tissues of the loser. It was the fusing process, body-snatching tendencies notwithstanding, that attracted De Tomaso’s interest.

De Tomaso and senior author Irving Weissman, MD, the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine, knew that the sea squirts’ ability to sense who was fusible appeared to bear strong similarities to certain cells in our own immune system, called natural killer cells. Like Botryllus, natural killer cells only recognize genetically similar material. Anything they don’t recognize, they attack, as often occurs in bone marrow transplants.

Through a long process of sorting and testing, De Tomaso’s team isolated the controlling gene. "We found a gene which by itself predicts whether two colonies will fuse or reject," he said, adding, "Now we have the first piece of the puzzle of understanding how this happens on a molecular level."

The gene is an immunoglobulin, the type of gene that makes up the entire human immune system. "This is the first time we’ve seen a connection between these two systems," said De Tomaso. Until now, no one had demonstrated any concrete similarity between the vertebrate and invertebrate immune systems. The ramifications of the finding may shed light not only on the evolution of our immune system, but also on how we might better control some aspects of it, such as our natural killer cells.

"If you could teach those natural killer cells to be tolerant, you could transplant bone marrow between any two people, a huge first step in curing diseases like leukemia," said De Tomaso. Learning how to manipulate our immune systems would also have major ramifications for treating autoimmune diseases such as multiple sclerosis, which essentially represents a breakdown of recognition by the immune system, attacking the body it should be defending.

De Tomaso’s team is already working on the next step in sorting out the workings of Botryllus’ immune system-deciphering the actual molecular mechanism by which the sea squirt ascertains which of its neighbors shares its urge to merge, in spite of the risks.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>