Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein scientists discover how protein crucial for motion is synthesised at the right place in the cell

24.11.2005


Researchers at the Albert Einstein College of Medicine and the German Cancer Research Institute have shown how protein synthesis is targeted to certain regions of a cell--a process crucial for the cellular motility that governs nerve growth, wound healing and cancer metastasis. Their study appears in the November 24 issue of the journal Nature.



Led by Drs. Robert Singer and Dr Stefan Huettelmaier, the research team focused on migrating fibroblast cells important in wound healing. To move towards a wound, these cells manufacture the protein actin, which polymerizes into long filaments that push the cell’s membrane outward to form protrusions.

The team’s previous work showed how newly formed actin messenger RNA molecules find their way to the cell’s periphery: A protein called ZBP1 binds to the messenger RNA and "escorts" it out of the fibroblast nucleus and into the cytoplasm. On reaching the cell’s periphery, the messenger RNA is translated into actin protein responsible for cell motility.


This new study reveals another key role for ZBP1: Not only does ZBP1 bind to actin messenger RNA and guide it to the cell’s periphery, but it also helps regulate where in the cell the messenger RNA is translated into actin.

"The ZBP1 bound to actin’s messenger RNA acts like a lock to prevent it from being translated into protein before reaching its destination," explains Dr. Singer. "On arriving at the cell periphery, the messenger RNA/ZBP1 complex encounters an enzyme, the protein kinase Src, which is active only in that part of the cell. Src adds a phosphate group to ZBP1 close to where it binds to messenger RNA, and this phosphorylation reaction detaches ZBP1 from the actin messenger RNA--unlocking the messenger RNA so it can now be translated into the actin protein that makes cell movement possible."

Understanding how actin synthesis is spatially regulated in motile cells could lead to new cancer therapies. "In cancer," says Dr. Singer, "we know that expression of ZBP1 correlates with benign tumors, while suppression of ZBP1 is associated with metastasis--when motile cancer cells break off from the primary tumor and invade other areas of the body. So a drug that could force tumor cells to express ZBP1 might prevent cancers from spreading."

In addition to Dr. Singer, other Einstein researchers involved in the study are Dr. John Condeelis, professor and co-chair with Dr. Singer of Einstein’s Department of Anatomy and Structural Biology, Daniel Zenklusen, Mike Lorenz, XiuHua Meng, and Jason Dictenberg of that department, Gary J. Bassell of the Department of Neuroscience at Einstein, and Dr. Marcell Lederer, now in Dr. Huettelmaier’s laboratory of Martin-Luther-University of Halle, Germany.

Karen Gardner | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>