Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immunological karma: T cells reactive to old flu infections make unrelated viral infections worse

24.11.2005


Childhood infection with Epstein-Barr virus (EBV) is often asymptomatic, while the same infection in adolescents and adults causes infectious mononucleosis (IM). Liisa Selin and colleagues from the University of Massachusetts Medical School now show how, in a strange twist of immunological karma, T cells specific to a previously encountered virus (such as the flu) may come back to haunt you, by overzealously responding to a subsequent, unrelated viral infection like EBV, thereby increasing the severity of the immune response and causing IM. Their results appear online on November 23 in advance of print publication in the December issue of the Journal of Clinical Investigation.



The authors found that, in patients with IM, memory CD8+ T cells specific to an epitope of the influenza virus encountered in a previous infection, also recognized and reacted to an epitope of the Epstein-Barr virus. These two epitopes, with only 33% similarity, stimulate different T cell activities, which in sum skew the immune response to EBV infection. Excessive lymphocyte proliferation contributes to the marked deviation in disease course and is symptomatic of IM.

Overall, this demonstration of cross-reactivity involving 2 immunodominant epitopes from 2 of the most common human viruses highlights the potential importance of cross-reactive T cells in human disease states.

Brooke Grindlinger | EurekAlert!
Further information:
http://www.the-jci.org
http://www.the-jci.org/artice.php?id=25078

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>