Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant gene related to cancer treatment may foster new oncology drugs

23.11.2005


Two proteins involved in the process that controls plant growth may help explain why human cells reject chemotherapy drugs, according to an international team of scientists.



Researchers from Purdue University and Kyoto University in Japan have shown for the first time that proteins similar to multi-drug resistant proteins in humans move a plant growth hormone into cells, said Purdue plant cell biologist Angus Murphy. Because plant proteins called P-glycoproteins (PGPs) are closely related to human P-glycoproteins that impact chemotherapy effectiveness, discovery of methods to control the plant protein’s activity may aid in development of therapies to reduce drug dosages administered to cancer patients, Murphy said.

Murphy is corresponding author of the study published in the November issue of Plant Cell. He also is corresponding author of a related article published in October’s Plant Journal.


"Results of this research will give us a better idea of the functioning of the multi-drug resistance process in which human cancer cells reject anticancer treatments," Murphy said.

Results of the two studies suggest a previously unknown relationship between two protein families involved in this process, he said. Working together, the proteins apparently move molecules of the plant growth hormone auxin through cell walls. In humans, related proteins rid cells of toxins such as cancer drugs.

"The findings of these two studies have important implications for biomedicine because we now can identify the parts of these proteins that determine whether cells take up or throw off different molecules, such as cancer drugs," Murphy said.

In the Plant Journal study, Murphy and his collaborators at the University of Zurich showed for first time that PGP1, a P-glycoprotein from the commonly used experimental plant Arabidopsis, directly transports auxin out of plant cells and also out of yeast and mammalian cells. In the Plant Cell study, they found that other PGP proteins move auxin into cells.

"Auxin molecules essentially are pulled through the cell membrane by PGP transport proteins," Murphy said. "It’s an energetic process that happens like pulling a rope through something sticky."

Both the multi-drug resistant PGPs in people and plants are part of a large family of proteins, called ATP-binding cassette (ABC) proteins, that act as delivery trucks to detoxify cells, send messages from cell to cell to influence biochemical reactions, and to regulate those reactions. The ABC proteins are so named because they must bind with ATP, the main cell energy source, in order to fulfill their mission.

The best known member of another class of transport proteins, PIN1, also may be a transporter, but appears to function primarily as an aide rather than the delivery truck for auxin transport, Murphy said. This finding revealed that PINs and PGPs may function together in long-distance auxin transport, according to the Plant Journal article. Named for the pin-shaped appearance of the mutant originally used to identify the gene that directs the activities of PIN1, these proteins are members of the major protein family, called facilators, that aid processes such as hormone transport.

Recent evidence suggests that teamwork between PGP and PIN proteins determines the direction auxin moves and, therefore, how the plant develops, Murphy said. In plants, shape, height and bending in response to light and gravity are largely determined by the direction and amount of auxin moving through their tissues.

Murphy and his collaborators on the Plant Journal study found that PGP1 and PGP19 move the hormone out of cells.

In the November Plant Cell report, Murphy’s research team reported that another P-glycoprotein, PGP4, functions in the opposite direction, providing the boost needed to import the hormone auxin into cells and to increase the amount transported.

"With these two studies, we’ve shown for the first time that both the uptake and release of molecules are mediated by interaction between the PGP transporter proteins and PIN facilitator proteins," Murphy said.

Other researchers involved with the Plant Cell study were Joshua Blakeslee, Wendy Peer, Boosaree Titapiwatanakun, Anindita Bandyopadhyay, Srinivas Makam, Ok Ran Lee and Elizabeth Richards, all of the Purdue Department of Botany and Plant Pathology; Kazuyoshi Teraska and Fumihiko Sato of the Laboratory of Molecular & Cellular Biology of Totipotency, Kyoto University, Japan; and Kazufumi Yazaki of the Laboratory of Plant Gene Expression, Kyoto University. Teraska, Blakeslee and Titapiwatanakun each contributed equally to the research project and as authors of the journal paper.

The U.S. National Science Foundation; the Ministry of Education, Culture, Sports, Science and Technology of Japan; and the Uehara Foundation of Kentucky provided support for this research.

On the Plant Journal paper, Markus Geisler of the Basel-Zurich Plant Science Center, University of Zurich, and Blakeslee were co-lead authors and contributed equally to the research; Murphy was corresponding author; and Enrico Martinola, of the University of Zurich, was senior author. The U.S. National Science Foundation and the Swiss National Science Foundation provided funding for the study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Angus Murphy, (765) 496-7956, murphy@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, forbes@purdue.edu, Agriculture News Page

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>