Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant gene related to cancer treatment may foster new oncology drugs

23.11.2005


Two proteins involved in the process that controls plant growth may help explain why human cells reject chemotherapy drugs, according to an international team of scientists.



Researchers from Purdue University and Kyoto University in Japan have shown for the first time that proteins similar to multi-drug resistant proteins in humans move a plant growth hormone into cells, said Purdue plant cell biologist Angus Murphy. Because plant proteins called P-glycoproteins (PGPs) are closely related to human P-glycoproteins that impact chemotherapy effectiveness, discovery of methods to control the plant protein’s activity may aid in development of therapies to reduce drug dosages administered to cancer patients, Murphy said.

Murphy is corresponding author of the study published in the November issue of Plant Cell. He also is corresponding author of a related article published in October’s Plant Journal.


"Results of this research will give us a better idea of the functioning of the multi-drug resistance process in which human cancer cells reject anticancer treatments," Murphy said.

Results of the two studies suggest a previously unknown relationship between two protein families involved in this process, he said. Working together, the proteins apparently move molecules of the plant growth hormone auxin through cell walls. In humans, related proteins rid cells of toxins such as cancer drugs.

"The findings of these two studies have important implications for biomedicine because we now can identify the parts of these proteins that determine whether cells take up or throw off different molecules, such as cancer drugs," Murphy said.

In the Plant Journal study, Murphy and his collaborators at the University of Zurich showed for first time that PGP1, a P-glycoprotein from the commonly used experimental plant Arabidopsis, directly transports auxin out of plant cells and also out of yeast and mammalian cells. In the Plant Cell study, they found that other PGP proteins move auxin into cells.

"Auxin molecules essentially are pulled through the cell membrane by PGP transport proteins," Murphy said. "It’s an energetic process that happens like pulling a rope through something sticky."

Both the multi-drug resistant PGPs in people and plants are part of a large family of proteins, called ATP-binding cassette (ABC) proteins, that act as delivery trucks to detoxify cells, send messages from cell to cell to influence biochemical reactions, and to regulate those reactions. The ABC proteins are so named because they must bind with ATP, the main cell energy source, in order to fulfill their mission.

The best known member of another class of transport proteins, PIN1, also may be a transporter, but appears to function primarily as an aide rather than the delivery truck for auxin transport, Murphy said. This finding revealed that PINs and PGPs may function together in long-distance auxin transport, according to the Plant Journal article. Named for the pin-shaped appearance of the mutant originally used to identify the gene that directs the activities of PIN1, these proteins are members of the major protein family, called facilators, that aid processes such as hormone transport.

Recent evidence suggests that teamwork between PGP and PIN proteins determines the direction auxin moves and, therefore, how the plant develops, Murphy said. In plants, shape, height and bending in response to light and gravity are largely determined by the direction and amount of auxin moving through their tissues.

Murphy and his collaborators on the Plant Journal study found that PGP1 and PGP19 move the hormone out of cells.

In the November Plant Cell report, Murphy’s research team reported that another P-glycoprotein, PGP4, functions in the opposite direction, providing the boost needed to import the hormone auxin into cells and to increase the amount transported.

"With these two studies, we’ve shown for the first time that both the uptake and release of molecules are mediated by interaction between the PGP transporter proteins and PIN facilitator proteins," Murphy said.

Other researchers involved with the Plant Cell study were Joshua Blakeslee, Wendy Peer, Boosaree Titapiwatanakun, Anindita Bandyopadhyay, Srinivas Makam, Ok Ran Lee and Elizabeth Richards, all of the Purdue Department of Botany and Plant Pathology; Kazuyoshi Teraska and Fumihiko Sato of the Laboratory of Molecular & Cellular Biology of Totipotency, Kyoto University, Japan; and Kazufumi Yazaki of the Laboratory of Plant Gene Expression, Kyoto University. Teraska, Blakeslee and Titapiwatanakun each contributed equally to the research project and as authors of the journal paper.

The U.S. National Science Foundation; the Ministry of Education, Culture, Sports, Science and Technology of Japan; and the Uehara Foundation of Kentucky provided support for this research.

On the Plant Journal paper, Markus Geisler of the Basel-Zurich Plant Science Center, University of Zurich, and Blakeslee were co-lead authors and contributed equally to the research; Murphy was corresponding author; and Enrico Martinola, of the University of Zurich, was senior author. The U.S. National Science Foundation and the Swiss National Science Foundation provided funding for the study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Angus Murphy, (765) 496-7956, murphy@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, forbes@purdue.edu, Agriculture News Page

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>