Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant gene related to cancer treatment may foster new oncology drugs

23.11.2005


Two proteins involved in the process that controls plant growth may help explain why human cells reject chemotherapy drugs, according to an international team of scientists.



Researchers from Purdue University and Kyoto University in Japan have shown for the first time that proteins similar to multi-drug resistant proteins in humans move a plant growth hormone into cells, said Purdue plant cell biologist Angus Murphy. Because plant proteins called P-glycoproteins (PGPs) are closely related to human P-glycoproteins that impact chemotherapy effectiveness, discovery of methods to control the plant protein’s activity may aid in development of therapies to reduce drug dosages administered to cancer patients, Murphy said.

Murphy is corresponding author of the study published in the November issue of Plant Cell. He also is corresponding author of a related article published in October’s Plant Journal.


"Results of this research will give us a better idea of the functioning of the multi-drug resistance process in which human cancer cells reject anticancer treatments," Murphy said.

Results of the two studies suggest a previously unknown relationship between two protein families involved in this process, he said. Working together, the proteins apparently move molecules of the plant growth hormone auxin through cell walls. In humans, related proteins rid cells of toxins such as cancer drugs.

"The findings of these two studies have important implications for biomedicine because we now can identify the parts of these proteins that determine whether cells take up or throw off different molecules, such as cancer drugs," Murphy said.

In the Plant Journal study, Murphy and his collaborators at the University of Zurich showed for first time that PGP1, a P-glycoprotein from the commonly used experimental plant Arabidopsis, directly transports auxin out of plant cells and also out of yeast and mammalian cells. In the Plant Cell study, they found that other PGP proteins move auxin into cells.

"Auxin molecules essentially are pulled through the cell membrane by PGP transport proteins," Murphy said. "It’s an energetic process that happens like pulling a rope through something sticky."

Both the multi-drug resistant PGPs in people and plants are part of a large family of proteins, called ATP-binding cassette (ABC) proteins, that act as delivery trucks to detoxify cells, send messages from cell to cell to influence biochemical reactions, and to regulate those reactions. The ABC proteins are so named because they must bind with ATP, the main cell energy source, in order to fulfill their mission.

The best known member of another class of transport proteins, PIN1, also may be a transporter, but appears to function primarily as an aide rather than the delivery truck for auxin transport, Murphy said. This finding revealed that PINs and PGPs may function together in long-distance auxin transport, according to the Plant Journal article. Named for the pin-shaped appearance of the mutant originally used to identify the gene that directs the activities of PIN1, these proteins are members of the major protein family, called facilators, that aid processes such as hormone transport.

Recent evidence suggests that teamwork between PGP and PIN proteins determines the direction auxin moves and, therefore, how the plant develops, Murphy said. In plants, shape, height and bending in response to light and gravity are largely determined by the direction and amount of auxin moving through their tissues.

Murphy and his collaborators on the Plant Journal study found that PGP1 and PGP19 move the hormone out of cells.

In the November Plant Cell report, Murphy’s research team reported that another P-glycoprotein, PGP4, functions in the opposite direction, providing the boost needed to import the hormone auxin into cells and to increase the amount transported.

"With these two studies, we’ve shown for the first time that both the uptake and release of molecules are mediated by interaction between the PGP transporter proteins and PIN facilitator proteins," Murphy said.

Other researchers involved with the Plant Cell study were Joshua Blakeslee, Wendy Peer, Boosaree Titapiwatanakun, Anindita Bandyopadhyay, Srinivas Makam, Ok Ran Lee and Elizabeth Richards, all of the Purdue Department of Botany and Plant Pathology; Kazuyoshi Teraska and Fumihiko Sato of the Laboratory of Molecular & Cellular Biology of Totipotency, Kyoto University, Japan; and Kazufumi Yazaki of the Laboratory of Plant Gene Expression, Kyoto University. Teraska, Blakeslee and Titapiwatanakun each contributed equally to the research project and as authors of the journal paper.

The U.S. National Science Foundation; the Ministry of Education, Culture, Sports, Science and Technology of Japan; and the Uehara Foundation of Kentucky provided support for this research.

On the Plant Journal paper, Markus Geisler of the Basel-Zurich Plant Science Center, University of Zurich, and Blakeslee were co-lead authors and contributed equally to the research; Murphy was corresponding author; and Enrico Martinola, of the University of Zurich, was senior author. The U.S. National Science Foundation and the Swiss National Science Foundation provided funding for the study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Angus Murphy, (765) 496-7956, murphy@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, forbes@purdue.edu, Agriculture News Page

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>