Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC chemists characterize Alzheimer’s plaque precursor

23.11.2005


Using a nuclear magnetic resonance technique, University of Illinois at Chicago chemists have obtained the first molecular-level images of precursors of bundled fibrils that form the brain plaques seen in Alzheimer’s disease.



Untangling the molecular structure of these pre-fibril forms, which may be the key neurotoxins in Alzheimer’s, may help identify targets for new drugs to combat many neurodegenerative diseases.

Microscopic bundled fibrils made of proteins called amyloid-beta are presumed to be the toxic culprits in the senile plaques found in the brain with Alzheimer’s. But there is increasing evidence that even smaller assemblies of amyloid-beta found prior to formation of pre-fibrils are the real nerve-killers. Scientists have been frustrated that electron microscope images of these nanometer-scale spherical assemblies have failed to reveal any distinct molecular structure.


Yoshitaka Ishii, assistant professor of chemistry at UIC, and graduate student Sandra Chimon have now determined this structure using a methodology developed with high-resolution solid-state nuclear magnetic resonance, or SSNMR. Details were reported in a Communication article last month in JACS, the Journal of the American Chemical Society.

"This is the first case showing that these intermediate species, the smaller assemblies, have a well-defined structure," said Ishii, who conducted a two-year search to map the structure of the pre-fibril assemblies, then spent another year confirming his findings.

Ishii’s technique uses what is called time-resolution SSNMR to view nanoscale spectral images of this chemical formation.

Thioflavin, a dye commonly used to stain amyloid senile plaques, is applied to detect formation of the intermediate assemblies in florescence. The intermediate sample is then frozen to capture quickly changing spectral images of the molecules before they can self-assemble into fibril-forming sheets.

The resulting SSNMR "snapshots" provide a structural diagram for finding molecular binding targets that may stop proteins from misfolding, which may stop Alzheimer’s disease from developing.

"We’re interested in how the molecules assemble in this shape, and eventually into fibrils," Ishii said. "We wanted to find out what kind of structure each amino acid takes in a certain site of a protein at the atomic level. It gives us an idea of how these molecules interact with each other to make this structure."

Ishii said the SSNMR technique may be used to study small chemical subunits involved in diseases such as Parkinson’s and prion diseases like mad cow or Creutzfeld-Jacob, to name just some of the 20 or so neurodegenerative diseases characterized by misfolding proteins.

"You want to design molecules that will interact and prevent this," said Ishii. "That’s been difficult. Now we have a new clue to learn how."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>