Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Figuring out the ups and downs—and sideways—of neural development

23.11.2005


One of the key controllers of neural development seems to depend on a simple cellular decision--whether to divide perpendicularly or in parallel to the embryonic structure called the neuroepithelium. Nevertheless, such orientation is critical, and understanding its machinery could help neuroscientists learn to control the division of adult neural stem cells to regenerate neural tissues.



Researchers know that during the earliest embryonic brain development, neural stem cells divide "symmetrically," producing identical immature progenitor cells that continue to proliferate. A bit later, however, when neural tissues need to begin to differentiate, the cells divide "asymmetrically," producing one proliferating progenitor and another that stops proliferating and differentiates into an adult neural cell. And during final brain development, the cells return to symmetric cell division, creating differentiated adult cells.

The two types of cell division seem to be governed by the orientation of the tiny bundles of fiber-like microtubules called spindles inside the dividing cell--whether the spindles are oriented parallel or perpendicular to the neuroepithelium. These spindles attach to the dividing chromosomes in the nucleus and drag the two copies apart, ensuring that each daughter cell has its fair share.


In an article in the November 23, 2005, issue of Neuron, Mihaela Žigman and colleagues have pinpointed a key regulator of spindle orientation in mammals. They drew on discoveries made in the fruit fly Drosophila, in which other researchers had found a gene called Inscuteable to be a central controller of spindle orientation. Analyzing genetic databases, Žigman and colleagues determined that versions of the Inscuteable gene could be found in higher animals, including mice, rats, and humans. Also, they found in their experiments, the mammalian version of Inscuteable (mInsc) appeared in regions of the cell and activated itself at times during cell division that was consistent with a role in spindle orientation.

Studying developing retinal tissue of embryonic rats, they observed that the protein produced by the mInsc gene concentrated at places in the developing cell that suggested a role in controlling spindle orientation.

And in key experiments, when they knocked-out activity of mInsc in the rat retina, they found abnormal spindle orientation. And importantly, in the rats lacking mInsc activity, they also observed abnormal retinal development, apparently because of a continued division that favors proliferating progenitor cells. In that tissue, the number of normal photoreceptor cells was reduced and the number of another type of neuron increased.

"We show that mInsc depletion ablates vertical mitotic spindle orientation in retinal progenitors and leads to defects in cell-fate specification and proliferation," concluded Žigman and colleagues. "Our results demonstrate that spindle orientation not only predicts but actually determines the fate of the two daughter cells.

"This identification of mInsc provides a unique tool to analyze the importance of oriented divisions in various other vertebrate tissues," they wrote. "For example, it was proposed that adult mammalian neural stem cells divide asymmetrically along the apical basal axis. It will be interesting to test whether spindle orientation is essential for asymmetric stem cell divisions as well. If so, this will be an important factor in exploring the regenerative capacity of these cells."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>