Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to the dark side of a key anti-tumor guardian

22.11.2005


The p53 protein is known to be a critical player in our body’s natural defense against cancer--it is absent in many types of tumor cells--but it also represents an intriguing paradox when it comes to the broader roles this protein plays in our well being. Past work has shown that in animal models, hyperactivation of the p53 protein is beneficial in terms of bestowing extra protection against tumor formation, but at the same time it has a significant negative effect: a shortening of lifespan, accompanied by hallmarks of accelerated aging, including osteoporosis, decreased stress resistance, and organ atrophy. Although researchers over recent years have established a foothold in understanding how p53 protects against cancer, the mechanisms by which it might contribute to aging and lifespan are not well studied. In work reported this week, researchers studying p53 function in fruit flies show new evidence that despite the protective role of p53 as a guardian against tumor formation, normal levels of p53 activity--at least in some cell types--may indeed contribute to aging and decreased lifespan.



The work is reported by Stephen Helfand and colleagues at Brown Universtiy, University of Connecticut Health Center, and University of Texas Southwest Medical Center.

The researchers investigated the role of p53 in aging by observing the effects of disrupting this protein in the neurons of adult fruit flies. They found that expression of a so-called "dominant-negative" version of p53--that is, a disfunctional version of the protein that inhibits the activity of normal p53--extended flies’ life span and increased their ability to withstand gene-damaging stress. The authors found that this disruption of p53 did not further increase the lifespan of flies on a calorie-restricted diet, suggesting that decreased p53 activity and calorie restriction may influence lifespan through a common molecular mechanism.


Because neurons are less prone to tumor formation than other cell types, and because disruption of p53 activity in neurons was sufficient to extend lifespan in the fruit fly, the new findings suggest that by attending to p53 activity in different cell types, it may be possible to take therapeutic advantage of p53’s tumor-preventing activity while avoiding its unwanted negative effects on lifespan.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>