Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of domesticated foxes reveals changes in gene expression as a basis for tame behavior

22.11.2005


By comparing foxes selected for tameness with others that have not been selected in this way, researchers have found evidence that dramatic behavioral and physiological changes accompanying tameness may be associated with only limited changes in gene activity in the brain.



The work is reported by Elena Jazin and colleagues at Uppsala University, the Swedish University of Agricultural Sciences, and the Norwegian University of Life Science.

The first step in the process of domestication in mammals is the selection for tame individuals that can adapt to life with humans and to frequent handling. To investigate the changes in gene activity that accompany tameness, in the present study the authors compared two groups of farm-raised silver foxes (Vulpes vulpes). One group derived from a long-standing domestication process in which farm-raised silver foxes have been selected for more than 40 generations for non-aggressive behavior toward men (see the related work of Brian Hare and colleagues, Current Biology 15:226–230). Another group of foxes was also farm raised but was not selected for tameness. The foxes selected for tameness were docile and friendly and showed developmental, morphological, and neurochemical changes similar to those observed in other domestic animals.


To examine what genetic and molecular mechanisms underlie these dramatic changes, the researchers studied the activities of thousands of genes in the brain of selected and non-selected silver foxes and compared the activity of these genes with that of genes in the brains of wild foxes.

The researchers found that although there were many differences in the gene-activity profiles of the wild and farm-raised foxes, foxes selected for tameness showed relatively limited changes in brain gene activity when they were compared to non-domesticated farm foxes. Because the selected and non-selected foxes live in an identical environment, the authors point out that the differences in gene activities that do exist between these two groups probably reflect the consequences of behavioral changes accompanying tameness, whereas the differences between wild and farm-raised foxes likely derive from other factors, including adaptations by farmed foxes to life in a captive environment. Taken together, the findings support the hypothesis that genetic changes influencing the activity of genes expressed in the brain may act as an important mechanism for evolutionary behavioral alterations that arise in the course of domestication.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>