Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How to Flip a Molecular Switch

21.11.2005


A means for controlling single-molecule switches by engineering their design and surrounding environment has been developed by a research team led by scientists at Penn State, Rice University, and the University of Oregon. The research demonstrates that single-molecule switches can be tailored to respond in predictable and stable ways, depending on the direction of the electric field applied to them--while some switches were engineered to turn on, others were engineered to turn off in response to the same applied electric field. The discovery, which is an essential step in the emerging field of molecular electronics, could further the development of nano-components--as small as molecules or atoms--for use in future generations of computers and other electronic devices.


Credit: Lewis et al.
Sequential STM images of FAPPB/R1ATC9 obtained at alternating sample biases of +1.0 and -1.0 V. The majority of the FAPPB molecules (apparent protrusions, displayed as bright spots) switch conductance states between OFF at +1.0 V and ON at -1.0 V sample bias. The red and green boxes follow one FAPPB molecule that exhibits this bias dependence. Imaging conditions: 4000 ‰ × 4000 ‰, I = 2 pA.



A paper describing the research results, titled "Molecular Engineering of the Polarity and Interactions of Molecular Electronic Switches," will be published in the Journal of the American Chemical Society on 21 December 2005. "This research confirms our hypothesis of how single-molecule switches work," says Penn State Professor of Chemistry and Physics Paul S. Weiss, whose lab tested the molecules. "Molecular switches eventually may become integrated into real electronics, but not until after someone discovers a way to wire them." In addition to Weiss, the research team includes Penelopie Lewis of Penn State, who now is at Columbia University; James Tour and Francisco Maya at Rice University; and James Hutchison and Christina Inman at the University of Oregon.

The research is the latest achievement in the team’s ongoing studies of a family of stiff, stringy molecules known as as OPEs--oligo phenylene-ethynylenes--which the scientists have tailored in a number of ways to have a variety of physical, chemical, and electronic characteristics. The potential for using these OPE molecules as switches had been limited by their troublesome tendency to turn on and off at random, but Weiss and his colleagues recently discovered a way to reduce this random switching. In their current research, the scientists demonstrated, with a number of definitive experiments, how and why it is possible to control these molecular switches.


To study the properties of individual OPE molecules, the scientists first inserted them into a hairbrush-like matrix of similarly shaped molecules, which Weiss describes as a "self-assembled amide-containing alkanethiol monolayer." One end of each molecular "bristle" is attached to the thin gold base of the microscopic hairbrush. With the individual OPE molecules surrounded by the matrix of alkanethiol molecules, all anchored in gold, Weiss and his team were able to study the properties of the OPE molecules with a powerful scanning tunneling microscope (STM). The molecules were synthesized in Tour’s lab at Rice University and the matrix was synthesized in Hutchinson’s lab at the University of Oregon.

The team synthesized a variety of OPE molecules, some with a large dipole--the difference in strength and polarity of the electric charge between one end of the molecule and the other--and others with a weaker dipole. Some of the OPE molecules were designed to have a positive charge on the end facing away from the gold base while others were designed to have a negative charge at that end. Weiss’s lab found that the tip of the microscope pulled an OPE molecule up higher than the surrounding matrix--or "on"--if the OPE molecule had a sufficiently strong dipole and if the charge of its exposed end was opposite that of the STM tip, making the two electrically attractive. "The OPEs that we engineered to have the strongest dipoles are the most reliable," Weiss says.

The researchers also found that if the charge of the STM tip was the same as that on the end of an OPE, and therefore electrically repulsive, the molecule was pushed down--or "off"--causing it to lean sideways into the matrix. They discovered that this position alters the molecule’s interaction with the system’s gold base, changing the system’s electrical conductance. "When the molecule is tilted over, electrons have a harder time going through this bond, so the switch is more resistive," Weiss explains.

The scientists also demonstrated that it is important to engineer the chemical environment, as well as the electronic environment, that surrounds the OPE molecule. "We repositioned a nitro group attached on the side of one of the varieties of OPE switches so it had a strong-enough dipole and could interact with the amide groups on the surrounding matrix molecules through hydrogen bonding," Weiss says. The team also redesigned the matrix so it would be able to interact better with the new functionality of this repositioned group. The team’s studies show that interactions of the molecular switches with the surrounding matrix molecules have a big effect on how long switches stayed in the on or off state, which is critical for information storage. These states remain stable and can be read back for hours in the systems that Weiss and his colleagues designed, assembled, and measured. "These chemical interactions stabilize the "on" and "off" states, reducing random switching," Weiss reports.

"With these studies, we have been able to confirm that we now have the predictive power to design molecular switches that can be turned on or off at will, which was a critical test of our understanding of their function."

This research was funded, in part, by the Army Research Office (ARO), Defense Advanced Research Projects Agency (DARPA), Department of Energy (DOE), National Science Foundation (NSF), National Institutes of Standards and Technology (NIST), and Office of Naval Research (ONR).

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.science.psu.edu/alert/Weiss11-2005.htm
http://www.psu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>