Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Simulation In Drug Development Helps Reducing Animal Tests

21.11.2005


Scientists at the Technische Universität Dresden/Germany are significantly involved in a European research project entitled “BioSim“ which aims at utilising biosimulation as a new tool in drug development. The use of computer simulations will provide more objective data which helps to develop drug compounds more effectively and to reduce investment in drug development drastically. Above all the number of animal tests as well as clinical studies with volunteers will decrease substantially.



“We intend to translate the existing knowledge of drug metabolism and the operating modes of several organs into mathematical models. These serve to perform complex computer simulations of the involved biochemical processes”, says assistant professor Dr Martin Bertau, biochemist at the Department of Chemistry and Food Chemistry at the Technische Universität Dresden.

The highly ambitious scientific “Network of excellence“ – also called “BioSim” – has been funded with 10.7 million euros by the European Union for a five year period since December 2004 and brings together internationally leading European research groups in the fields of life sciences, medicine and mathematics. The activities are coordinated by Professor Erik Mosekilde, Institute of Physics at the Danish University of Technology in Kgs. Lyngby. On the part of the pharmaceutical industry Apogepha Arzneimittel GmbH is involved in Dresden. The network is completed by European regulatory agencies as well as the European Federation of Pharmaceutical Sciences.


In addition to a model of drug metabolism the European activities comprise approaches to the biosimulation of diabetes, cardiac arrhythmia, neurologic/psychiatric disorders and tumor diseases.

At the TU Dresden, a working group of nine scientists headed by assistant professor Dr Martin Bertau of the Institute of Biochemistry as well as researchers from the Institute of High-Performance Computing participate in “BioSim“. Recently, their novel approach in predicting drug metabolism has been successfully demonstrated, using the model drug compound chloramphenicol.

PD Dr Martin Bertau | alfa
Further information:
http://www.tu-dresden.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>