Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find pathways linking caloric restriction to aging process

18.11.2005


Researchers at the University of Washington have found a genetic pathway linking nutrient response and the aging process, they report in the Nov. 18 issue of the journal Science. Scientists have long known that dramatically reducing food intake boosts the lifespan of model organisms such as mice, but the new results point to a possible mechanism through which drastic calorie restriction affects aging.



As scientists learn more about the biochemical processes that affect lifespan, they might one day be able to target those processes to reduce the effects of age-related diseases like heart disease or diabetes.

The UW researchers conducted a genome-wide screen of yeast cells to find which genes, and their corresponding proteins, affect lifespan. Two of the proteins, called Tor1 and Sch9, are signaling molecules that are linked to nutrient uptake in many different organisms. Their results suggest that the same proteins, or very similar ones, may be related to both nutrient response and the aging process in humans.


"The idea is to identify pathways in yeast that are involved in aging, and take them to higher organisms like mice and eventually people," explained Brian Kennedy, assistant professor of biochemistry at the UW School of Medicine and one of the study’s main authors. He collaborated on the project with Matt Kaeberlein, a postdoctoral researcher in the lab of Stanley Fields, professor of genome sciences at the UW and Howard Hughes Medical Institute investigator.

After finding ten genes that regulate lifespan, the researchers tested two – Tor1 and Sch9 – to confirm their connection to caloric restriction. One test combined caloric restriction with the genetic mutation to Tor1 that reduced signaling on the TOR pathway. They saw lifespan increases in the resulting yeast cells that were about the same as a cell that had just the Tor1 mutation, indicating that the mutation was doing the same thing as caloric restriction.

"The TOR pathway is evolutionarily conserved, meaning it is common to many lifeforms," said Kaeberlein. "We’d like to know if this is the pathway through which caloric restriction affects lifespan. We think this may be why mice live longer with calorie restriction, because of TOR pathway down-regulation."

The two researchers plan to find out that very thing by studying further the TOR pathway in mice. Unlike yeast, though, that gene is essential for mice to live, so they can’t delete the gene entirely. But mice have two copies of the TOR gene, which means the researchers can knock out one copy, essentially cutting activity on the TOR pathway in half. They can then study the lifespan of those mice compared to others, and also look at the progression of age-related conditions in the mutants to see if reducing TOR signaling affects those diseases.

The other signaling protein the researchers found in the yeast study, Sch9, is the yeast version of another signaling protein called AKT, which is found in humans and other mammals. AKT is related to the regulation of the insulin and insulin-like growth factor (IGF-1) pathways, and has also been found to affect lifespan in other model organisms. "Having this pathway implicated in lifespan is consistent with the theory about insulin/IGF-1 response in animals and humans," explained Kaeberlein. "That theory basically says that high nutrient levels make the organism grow faster and bigger, but also reduce lifespan. This may be one reason why calorie-restricted mice live longer, but are smaller than other mice."

The researchers admit that there might be multiple ways to increase the lifespan of model organisms and humans. However, extreme calorie restriction has been shown to be the one process that affects aging universally. It doesn’t just make the organism live longer overall, it also reduces the debilitating effects of aging and age-related diseases. Calorie-restricted mice don’t just live longer, they live healthier for longer.

"Caloric restriction is acting at the root level of the aging mechanism," said Kennedy. "If we can understand how that works, then maybe you can target the genes or proteins that regulate those processes, and you can alter aging and its effects without reducing caloric intake."

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>