Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic defenders protect crops from fungal disease


Like waves of soldiers guarding a castle gate, multiple genetic defenders cooperate to protect plant cells against powdery mildew disease, according to a new study. Powdery mildew is a common fungal infection in plants that attacks more than 9,000 species, including many crops such as barley and wheat, and horticultural plants such as roses and cucumbers. The researchers, including Shauna Somerville and Mónica Stein of the Carnegie Institution’s Department of Plant Biology, are the first to document how these defense genes team up in plants. The discovery could help combat fungal parasites that devastate crops and cost growers billions of dollars in pesticides every year.

Arabidopsis plants inoculated with Erysiphe pisi fungal spores are shown here. From left to right, plants with no mutations (WT), a disabled PEN2 gene, disabled PAD4 and SAG101 genes, and all three disabled genes together are increasingly vulnerable to the fungus. This last variant is the most susceptible to infection; it allowed E pisi to proliferate as well as it does on pea plants, its normal host. (Images printed with permission from the American Association for the Advancement of Science, Science, November 18, 2005, issue.)

The study, published in the November 18 issue of the journal Science, describes powdery mildew infection in the mustard relative Arabidopsis thaliana. Each species of mildew is host-specific, meaning it can infect some plant species, but not others. By disabling protective genes in Arabidopsis, the researchers were able to infect the plants with species of powdery mildew that normally attack peas or barley, revealing much about how plants use genes to fight infection.

"Most plants are resistant to the majority of pathogens they encounter, but the basis for this resistance was unknown," Somerville said. "Identifying these genes has provided us with the first insight into how plants defend against multiple pathogens."

Once a powdery mildew infection takes hold, it covers the plant with fuzzy splotches, while sapping precious nutrients. At the cellular level, the fungal spores invade healthy plant cells and form root-like feeding structures called haustoria. The plant cell wall is the primary barrier to this invasion and one of the defense genes described in the current study, called PEN2, prevents the fungus from penetrating cell walls in the first place.

If this first line of defense breaks down, as it does in about 5 to 25 percent of normal Arabidopsis plants (depending on the mildew species), a second set of genes jumps into the fray. These genes, called EDS1, PAD4, and SAG101, work together in a complex inside the cell, and can signal infected cells to die. By sacrificing these fallen cells, the defense genes can spare healthy ones from infection.

Somerville, Stein, and colleagues at the Max Planck Institute for Plant Breeding in Köln disabled the protective genes in Arabidopsis by introducing mutations, one at a time and in various combinations. They infected these mutants with one of two species of powdery mildew: Blumeria graminis hordei, a species that attacks barley, and Erysiphe pisi, one that thrives on the leaves and pods of pea plants.

"Disabling just three genes allowed the pea powdery mildew to reproduce as well on Arabidopsis as it does on its normal host," Somerville remarked. "Thus, the resistance barriers limiting the growth of inappropriate pathogens are much less complex than expected, relying on just a limited number of genes."

The EDS1, PAD4, and SAG101 gene complex’s ability to signal cell death is relatively well known to scientists. However, very little is known about how PEN2 behaves in the cell. The current study demonstrates that the PEN2 protein is a catabolic enzyme--a protein that breaks down other molecules--though its specific target remains unknown.

The study expands on the researchers’ previous work with a gene called PEN1. As its name suggests, PEN1 and PEN2 seem to share a common purpose. However, they seem to act via different mechanisms, and PEN2 protects against a wider range of fungal pathogens. For example, Arabidopsis plants with a disabled PEN2 gene are also more susceptible to Phytopthora infestans, the fungus responsible for the notorious Irish Potato Famine of the mid-19th century.

"The resistance mechanisms operating at the cell wall seem to be surprisingly simple," Somerville said. "This suggests it might be possible to reverse engineer crops like wheat with Arabidopsis PEN genes to help control powdery mildew and other destructive diseases, thus minimizing the need for pesticides."

Dr. Shauna Somerville | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>