Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic defenders protect crops from fungal disease

18.11.2005


Like waves of soldiers guarding a castle gate, multiple genetic defenders cooperate to protect plant cells against powdery mildew disease, according to a new study. Powdery mildew is a common fungal infection in plants that attacks more than 9,000 species, including many crops such as barley and wheat, and horticultural plants such as roses and cucumbers. The researchers, including Shauna Somerville and Mónica Stein of the Carnegie Institution’s Department of Plant Biology, are the first to document how these defense genes team up in plants. The discovery could help combat fungal parasites that devastate crops and cost growers billions of dollars in pesticides every year.


Arabidopsis plants inoculated with Erysiphe pisi fungal spores are shown here. From left to right, plants with no mutations (WT), a disabled PEN2 gene, disabled PAD4 and SAG101 genes, and all three disabled genes together are increasingly vulnerable to the fungus. This last variant is the most susceptible to infection; it allowed E pisi to proliferate as well as it does on pea plants, its normal host. (Images printed with permission from the American Association for the Advancement of Science, Science, November 18, 2005, issue.)



The study, published in the November 18 issue of the journal Science, describes powdery mildew infection in the mustard relative Arabidopsis thaliana. Each species of mildew is host-specific, meaning it can infect some plant species, but not others. By disabling protective genes in Arabidopsis, the researchers were able to infect the plants with species of powdery mildew that normally attack peas or barley, revealing much about how plants use genes to fight infection.

"Most plants are resistant to the majority of pathogens they encounter, but the basis for this resistance was unknown," Somerville said. "Identifying these genes has provided us with the first insight into how plants defend against multiple pathogens."


Once a powdery mildew infection takes hold, it covers the plant with fuzzy splotches, while sapping precious nutrients. At the cellular level, the fungal spores invade healthy plant cells and form root-like feeding structures called haustoria. The plant cell wall is the primary barrier to this invasion and one of the defense genes described in the current study, called PEN2, prevents the fungus from penetrating cell walls in the first place.

If this first line of defense breaks down, as it does in about 5 to 25 percent of normal Arabidopsis plants (depending on the mildew species), a second set of genes jumps into the fray. These genes, called EDS1, PAD4, and SAG101, work together in a complex inside the cell, and can signal infected cells to die. By sacrificing these fallen cells, the defense genes can spare healthy ones from infection.

Somerville, Stein, and colleagues at the Max Planck Institute for Plant Breeding in Köln disabled the protective genes in Arabidopsis by introducing mutations, one at a time and in various combinations. They infected these mutants with one of two species of powdery mildew: Blumeria graminis hordei, a species that attacks barley, and Erysiphe pisi, one that thrives on the leaves and pods of pea plants.

"Disabling just three genes allowed the pea powdery mildew to reproduce as well on Arabidopsis as it does on its normal host," Somerville remarked. "Thus, the resistance barriers limiting the growth of inappropriate pathogens are much less complex than expected, relying on just a limited number of genes."

The EDS1, PAD4, and SAG101 gene complex’s ability to signal cell death is relatively well known to scientists. However, very little is known about how PEN2 behaves in the cell. The current study demonstrates that the PEN2 protein is a catabolic enzyme--a protein that breaks down other molecules--though its specific target remains unknown.

The study expands on the researchers’ previous work with a gene called PEN1. As its name suggests, PEN1 and PEN2 seem to share a common purpose. However, they seem to act via different mechanisms, and PEN2 protects against a wider range of fungal pathogens. For example, Arabidopsis plants with a disabled PEN2 gene are also more susceptible to Phytopthora infestans, the fungus responsible for the notorious Irish Potato Famine of the mid-19th century.

"The resistance mechanisms operating at the cell wall seem to be surprisingly simple," Somerville said. "This suggests it might be possible to reverse engineer crops like wheat with Arabidopsis PEN genes to help control powdery mildew and other destructive diseases, thus minimizing the need for pesticides."

Dr. Shauna Somerville | EurekAlert!
Further information:
http://www.carnegieinstitution.org
http://www.stanford.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>