Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice models developed at UCSD to benefit patients with multiple system atrophy

17.11.2005


Researchers at the University of California, San Diego (UCSD) School of Medicine have developed a series of transgenic mouse models of multiple system atrophy, a progressive, fatal neurological disorder. The work is reported in the November 16 issue of the Journal of Neuroscience by Eliezer Masliah, M.D., Professor of Neuroscience and Pathology at UCSD and Cliff Shults, M.D. Professor of Neuroscience at UCSD and Neurologist at the VA San Diego Healthcare System.



The mouse models are important, not only in providing new insights into the processes that cause degeneration of the nervous system in patients with multiple system atrophy, but also as models in which to study treatments for the disease.

"The models will help researchers develop therapies for this degenerative disease by enabling us to study potential treatments that might interfere with the aggregation of alpha-synuclein and slow the progression of multiple system atrophy," said Shults.


Masliah added, "Development of these models may also prove relevant to our understanding other neurological disorders, enabling us to test new drugs for Parkinson’s and other diseases."

UCSD School of Medicine is one of the world’s leading centers for research in alpha-synuclein, the major component of inclusions or clusters found in the brains of patients with multiple system atrophy, Parkinson’s disease and other neurological disorders. Patients with multiple system atrophy suffer from progressive, worsening symptoms of Parkinson’s disease, impaired coordination, and dysfunction in control of blood pressure and bladder function. The disease is characterized by aggregates of alpha-synuclein in oligodendrocytes, a type of cell in the brain that provides insulation for the nerve processes in the brain. The presence of alpha-synuclein was first identified in the human brain by researchers at UCSD.

Mice were genetically engineered in Masliah’s laboratory to express high amounts of alpha-synuclein in oligodendrocytes. The mice exhibited symptoms, including problems with movement and injury to nerve cells, found in patients with multiple system atrophy. The models’ brains demonstrated abnormal clusters of alpha-synuclein, similar to those seen in the brains of patients with the disease.

The work was carried out as part of a multi-institutional effort at 12 of the leading centers in research in neurological disorders in the United States, coordinated from UCSD, to understand the causes of multiple system atrophy and to eventually develop treatments to slow the progression of the disease. Masliah and Shults have already begun to use the mice models to screen drugs that might benefit patients with multiple system atrophy, another example of leading translational research being conducted at UCSD.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>