Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice models developed at UCSD to benefit patients with multiple system atrophy

17.11.2005


Researchers at the University of California, San Diego (UCSD) School of Medicine have developed a series of transgenic mouse models of multiple system atrophy, a progressive, fatal neurological disorder. The work is reported in the November 16 issue of the Journal of Neuroscience by Eliezer Masliah, M.D., Professor of Neuroscience and Pathology at UCSD and Cliff Shults, M.D. Professor of Neuroscience at UCSD and Neurologist at the VA San Diego Healthcare System.



The mouse models are important, not only in providing new insights into the processes that cause degeneration of the nervous system in patients with multiple system atrophy, but also as models in which to study treatments for the disease.

"The models will help researchers develop therapies for this degenerative disease by enabling us to study potential treatments that might interfere with the aggregation of alpha-synuclein and slow the progression of multiple system atrophy," said Shults.


Masliah added, "Development of these models may also prove relevant to our understanding other neurological disorders, enabling us to test new drugs for Parkinson’s and other diseases."

UCSD School of Medicine is one of the world’s leading centers for research in alpha-synuclein, the major component of inclusions or clusters found in the brains of patients with multiple system atrophy, Parkinson’s disease and other neurological disorders. Patients with multiple system atrophy suffer from progressive, worsening symptoms of Parkinson’s disease, impaired coordination, and dysfunction in control of blood pressure and bladder function. The disease is characterized by aggregates of alpha-synuclein in oligodendrocytes, a type of cell in the brain that provides insulation for the nerve processes in the brain. The presence of alpha-synuclein was first identified in the human brain by researchers at UCSD.

Mice were genetically engineered in Masliah’s laboratory to express high amounts of alpha-synuclein in oligodendrocytes. The mice exhibited symptoms, including problems with movement and injury to nerve cells, found in patients with multiple system atrophy. The models’ brains demonstrated abnormal clusters of alpha-synuclein, similar to those seen in the brains of patients with the disease.

The work was carried out as part of a multi-institutional effort at 12 of the leading centers in research in neurological disorders in the United States, coordinated from UCSD, to understand the causes of multiple system atrophy and to eventually develop treatments to slow the progression of the disease. Masliah and Shults have already begun to use the mice models to screen drugs that might benefit patients with multiple system atrophy, another example of leading translational research being conducted at UCSD.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>