Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drugs in the pipeline for public health diseases

17.11.2005


Swedish chemists synthesizing substances for blood clots, malaria, and hepatitis C.



Chemists at Linköping University in Sweden have developed three types of molecules, protease inhibitors, that can be further developed into drugs for cardiovascular diseases, malaria, and hepatitis C.

Proteases are a group of enzymes that play a major role in the course of certain diseases. If there is a molecule present that prevents the protease from working, the disease can be cured. Such substances are called inhibitors and are already in use in many drugs today.


Per-Ola Johansson, a doctoral candidate in organic chemistry, describes in his dissertation the synthesis of such protease inhibitors, designed for potential use in combating three different diseases: cardiovascular diseases (to prevent the formation of blood clots), malaria, and chronic jaundice of the type hepatitis C.

Thrombin is a protease that plays a key role when blood coagulates. In some individuals this process is hyperactive, which can lead to the formation of blood clots. The research team at Linköping University has synthesized a series of molecules that inhibit the activity of thrombin in varying degrees. The most active of these molecules give an indication of how to go about creating the optimal thrombin inhibitor to develop a functioning drug.

Malaria, which affects some 500 million people annually, killing nearly 2 million of them, is caused by a single-cell parasite that breaks down the hemoglobin in red blood corpuscles. For tools, the parasite makes use of a number of different protease enzymes. The research team has developed a large number of molecules that inhibit the activity of two of these, plasmepsin I and II. Some of these inhibitors have proven to be extremely effective and could be optimized to become a powerful new malaria drug.

Hepatitis C is caused by the virus HCV. When it proliferates, HCV forms a chain-shaped molecule that is cut in smaller pieces by various protease enzymes, and these pieces then build up new virus particles. The team has synthesized a series of inhibitors of NS3, one of the most important of these enzymes.

This work has been carried out under the supervision of Professor Ingemar Kvarnström, Professor Bertil Samuelsson, and Åsa Rosenquist, Ph.D., and in collaboration with the pharmaceutical companies Medivir and Astra Zeneca.

The dissertation is titled Design and synthesis of inhibitors that target the serine protease thrombin, the malarial aspartyl proteases plasmepsin I and II, and the hepatitis C virus NS3 serine protease.

Åke Hjelm | alfa
Further information:
http://www.liu.se

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>