Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drugs in the pipeline for public health diseases

17.11.2005


Swedish chemists synthesizing substances for blood clots, malaria, and hepatitis C.



Chemists at Linköping University in Sweden have developed three types of molecules, protease inhibitors, that can be further developed into drugs for cardiovascular diseases, malaria, and hepatitis C.

Proteases are a group of enzymes that play a major role in the course of certain diseases. If there is a molecule present that prevents the protease from working, the disease can be cured. Such substances are called inhibitors and are already in use in many drugs today.


Per-Ola Johansson, a doctoral candidate in organic chemistry, describes in his dissertation the synthesis of such protease inhibitors, designed for potential use in combating three different diseases: cardiovascular diseases (to prevent the formation of blood clots), malaria, and chronic jaundice of the type hepatitis C.

Thrombin is a protease that plays a key role when blood coagulates. In some individuals this process is hyperactive, which can lead to the formation of blood clots. The research team at Linköping University has synthesized a series of molecules that inhibit the activity of thrombin in varying degrees. The most active of these molecules give an indication of how to go about creating the optimal thrombin inhibitor to develop a functioning drug.

Malaria, which affects some 500 million people annually, killing nearly 2 million of them, is caused by a single-cell parasite that breaks down the hemoglobin in red blood corpuscles. For tools, the parasite makes use of a number of different protease enzymes. The research team has developed a large number of molecules that inhibit the activity of two of these, plasmepsin I and II. Some of these inhibitors have proven to be extremely effective and could be optimized to become a powerful new malaria drug.

Hepatitis C is caused by the virus HCV. When it proliferates, HCV forms a chain-shaped molecule that is cut in smaller pieces by various protease enzymes, and these pieces then build up new virus particles. The team has synthesized a series of inhibitors of NS3, one of the most important of these enzymes.

This work has been carried out under the supervision of Professor Ingemar Kvarnström, Professor Bertil Samuelsson, and Åsa Rosenquist, Ph.D., and in collaboration with the pharmaceutical companies Medivir and Astra Zeneca.

The dissertation is titled Design and synthesis of inhibitors that target the serine protease thrombin, the malarial aspartyl proteases plasmepsin I and II, and the hepatitis C virus NS3 serine protease.

Åke Hjelm | alfa
Further information:
http://www.liu.se

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>