Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC Davis researchers discover genetic switch involved in cells’ response to radiation therapy


Finding could lead to more effective, less toxic radiosensitizing drugs for cancer patients

UC Davis Cancer Center researchers have discovered a genetic switch that causes cancer cells to become more sensitive to a drug administered to enhance radiation therapy effectiveness. The switch does not make the drug more toxic.

The discovery may help scientists design new anti-cancer agents that enhance the effectiveness of radiation therapy with less toxicity than currently available radiosensitizing drugs. The finding is reported in the Priority Reports section of the last issue of the journal Cancer Research (Oct. 17 – Oct. 31).

Allan Chen, assistant professor of radiation oncology at UC Davis Cancer Center, found that Ku86, a gene involved in DNA repair, acts as a switch that, when turned off, makes cells significantly more vulnerable to the radiosensitizing property of the anti-cancer drug camptothecin.

Ku86 had no effect on the radiosensitizing abilities of other anti-cancer agents tested – etoposide, cisplatin and vinblastine. Ku86 also had no effect on camptothecin toxicity.

The team concluded that, like a switch that controls only a certain light bulb, Ku86 uniquely affects radiosensitization, but not cytotoxicity, induced by camptothecin.

The UC Davis researchers started by identifying which enzymes affect radiosensitivity and cytotoxicity, then painstakingly determined a way to control such enzymes.

The investigation focused on an enzyme called DNA topoisomerase I, which is responsible for cutting single DNA strands so that the DNA molecule can rotate and unwind during transcription and replication. Camptothecin stops DNA topoisomerase I during the unwinding process, ultimately killing the cell.

Claudia Morain | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>