Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers discover genetic switch involved in cells’ response to radiation therapy

17.11.2005


Finding could lead to more effective, less toxic radiosensitizing drugs for cancer patients



UC Davis Cancer Center researchers have discovered a genetic switch that causes cancer cells to become more sensitive to a drug administered to enhance radiation therapy effectiveness. The switch does not make the drug more toxic.

The discovery may help scientists design new anti-cancer agents that enhance the effectiveness of radiation therapy with less toxicity than currently available radiosensitizing drugs. The finding is reported in the Priority Reports section of the last issue of the journal Cancer Research (Oct. 17 – Oct. 31).


Allan Chen, assistant professor of radiation oncology at UC Davis Cancer Center, found that Ku86, a gene involved in DNA repair, acts as a switch that, when turned off, makes cells significantly more vulnerable to the radiosensitizing property of the anti-cancer drug camptothecin.

Ku86 had no effect on the radiosensitizing abilities of other anti-cancer agents tested – etoposide, cisplatin and vinblastine. Ku86 also had no effect on camptothecin toxicity.

The team concluded that, like a switch that controls only a certain light bulb, Ku86 uniquely affects radiosensitization, but not cytotoxicity, induced by camptothecin.

The UC Davis researchers started by identifying which enzymes affect radiosensitivity and cytotoxicity, then painstakingly determined a way to control such enzymes.

The investigation focused on an enzyme called DNA topoisomerase I, which is responsible for cutting single DNA strands so that the DNA molecule can rotate and unwind during transcription and replication. Camptothecin stops DNA topoisomerase I during the unwinding process, ultimately killing the cell.

Claudia Morain | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>