Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older Female Fish Prefer Imperfect Male Mates

17.11.2005


There’s hope for the less-than-perfect male – if you’re a swordtail fish, that is. As the size and age of female swordtail fish increase, so does the preference for males with asymmetrical markings, according to a new Ohio University study.

Molly Morris, associate professor of biological sciences, and colleagues found that older female swordtails spent more time with asymmetrically striped males than symmetrical males when offered a choice.

These findings are the first to contradict previous studies showing that females tend to prefer males with symmetrical markings, which in this case are black bars on each side of the body. Scientists have suggested that symmetrical markings are a sign of genetic fitness.



The new study provides evidence that visual cues are not the only thing driving mate selection, however. The findings also suggest that “females may not have the same mating preferences throughout their lives,” Morris said.

Funded by the National Science Foundation and the Research Challenge Program at Ohio University, the paper has been published online in Biology Letters and will appear in next month’s print edition.

Morris’ findings raise the question of whether there may be a change in mating preference over time in other species as well. In a current study on human attraction, for example, the average age of the females and males tested for preference for symmetrical faces was only 20.3 years and 19.5 years, she said.

The swordtail fish used in the latest research are two species of Mexican fish, Xiphophorus cortezi and Xiphophorus malinche. Because the genetic makeup of these fish is well known, researchers often use them to examine genetic causes of behavior.
To conduct the study, Morris and colleagues exposed females of both species to video animations of male fish, one with an equal number of bar markings on each side of the body, and one with an unequal number of bars on each side.

The animations simultaneously were projected on opposite sides of a tank, and researchers measured the time the female spent with each animation. While younger and smaller females still showed a preference for the symmetrical male, older and larger females increasingly preferred the asymmetrical male.

In previous research conducted elsewhere, females were shown to prefer symmetrical over asymmetrical males when presented with a choice. Scientists suggested that symmetrical figures have more redundant information, which makes for a more powerful, easy-to-remember stimulus. Females also may be likely to choose symmetrical males because they are better able to deal with environmental stresses and could pass on that resilience to offspring.

Another explanation would be that the visual system “develops an internal prototype of an object that is based on an average of all the male fish [the females] have seen,” Morris said. “Therefore, any fish they see that is closest to this prototype is preferred.” The same phenomenon has been suggested to explain attraction in other animals, including humans.

As their lives progress, however, female swordtails may encounter more asymmetrical than symmetrical males, and so begin to prefer the pattern to which they have become accustomed in their environment, she said.

Further research based on this study might examine whether the experience of mating draws older females to asymmetrical males, or whether there is a genetic factor, activated at a certain age or size, that makes larger females select more asymmetrically striped males.

The asymmetrical barring pattern is likely a result of environmental stresses experienced before birth, Morris explained. Some males have the genetic makeup to deal with these stresses and still develop a symmetrical pattern, while others survive the stress but show marks of the struggle. A population with a large amount of asymmetrical individuals may have been subject to a lot of environmental stress, such as pollution.

Co-authors of the study were post-doctoral fellow Oscar Rios-Cardenas and undergraduate student Mary Scarlett Tudor, both of Ohio University.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>