Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein marker associated with positive outcome in invasive breast cancer

16.11.2005


Breast cancer associated gene 2 is key



Researchers at Sunnybrook and Women’s College Health Sciences Centre have found a new protein marker linked to positive outcome in patients with breast cancer.

The research published today in Cancer Research is the first to show that patients with high levels of the protein BCA2 are less likely to experience breast cancer re-occurrence than patients with low levels of BCA2.


"For the first time we have been able to show that the over-expression of BCA2 is a favorable factor in breast cancer in relation to occurrence of lymph node metastases and regional recurrence," says principle investigator Dr. Arun Seth, senior scientist in molecular and cellular biology research at Sunnybrook & Women’s. "Higher levels of BCA2 are somewhat protective for regional recurrence."

Testing the effects of BCA2 expression in 1000 invasive breast tumor samples, researchers revealed that BCA2 is associated with the positive estrogen receptor, negative lymph node status and an increase in disease-free survival for regional recurrence.

Estrogen receptor (ER) positive invasive breast cancers in general have a better prognosis than ER-negative tumors and are less aggressive. In breast cancer where BCA2 and ER expression are co-regulated BCA2 might provide an alternative target for the treatment of hormone-refractory breast tumors.

BCA2, a novel RING type E3 ligase protein discovered by Seth’s lab in 2000 and filed for a patent in the US in 2002, has an inherent autoubiquitination activity. Ubiquitin is a small protein that marks other proteins by attaching itself to them and directing them to the proteasome for degradation. The BCA2 mediated such ubiquitin modification of the specific cancer related proteins affect breast cancer progression.

"Now that we have determined that higher levels BCA2 are associated with a positive outcome, we are working to determine whether the BCA2 ligase functions as an oncogene in some tissues and as a tumor suppressor in others," says Seth who is also a professor at the University of Toronto. "Targeting the BCA2 mediated breakdown of tumor suppressors could provide a new therapy to block breast tumor growth."

The Canada Foundation for Innovation and the Ontario Innovation Trust, now the Ontario Research Fund - Research Infrastructure, funded the infrastructure for this research. The Canadian Institutes of Health Research and the Canadian Breast Cancer Research Alliance provided operating grants.

Sunnybrook and Women’s College Health Sciences Centre is transforming health care through the dedication of its more than 10,000 staff members and volunteers. Specializing in women’s health programs, caring for Canada’s war veterans, conducting leading-edge research, and teaching the latest advances in healthcare through our affiliation with the University of Toronto, distinguishes Sunnybrook & Women’s as one of the country’s premier academic health sciences centres. Sunnybrook & Women’s improves the lives of hundreds of thousands of people each year by caring for newborns, adults and the elderly, treating and preventing cancer, heart and circulation diseases, disorders of the brain, mind and nervous system, orthopaedic and arthritic conditions, and traumatic injuries.

Jennifer White | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>