Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New antibody profiling technique to test for lung cancer


American Thoracic Society journal news tips for November 2005 (second issue)

Biomedical scientists have revealed a new and promising antibody profiling technique that provides a high degree of early diagnostic accuracy for non-small cell lung cancer cases.

Their research was reported in the second issue of November 2005 of the American Journal of Respiratory and Critical Care Medicine, published by the American Thoracic Society.

Li Zong, Ph.D. of the Division of Pulmonary and Critical Care Medicine, Chandler Medical Center, University of Kentucky, Lexington, along with five associates, has identified five non-small cell lung cancer-associated antibody proteins that achieved 90 percent sensitivity and 95 percent specificity in identifying cancerous versus non-cancerous patient samples.

(Sensitivity indicates the probability that results will be positive when disease is present. Specificity identifies the probability that results will be negative when disease is absent.)

According to the U.S. National Cancer Institute, 160,000 people die each year from lung cancer, making it the number one cause of cancer death in America. Smoking is the primary cause of the disease.

The authors state that presently only 25 percent of new cases of lung cancer are diagnosed at an early stage, when curative surgery is possible.

"Serum tumor markers have the potential of being incorporated into diagnostic and therapeutic practice to improve historically dismal outcomes in non-small cell lung cancer," said Dr. Zong. "Potential uses include early detection or screening, differentiation of benign from malignant disease, differentiating histologies, defining stages and responses to therapy, and defining prognosis.

"These goals have generated considerable interest in identifying predictive tumor markers," Dr. Zong continues. "Although a number of non-small cell lung cancer tumor markers are measurable and a combination of markers can enhance diagnostic value, limited sensitivity and specificity of these markers preclude their wide-spread clinical use. In context, tumor-associated antigens may expand the range of non-small cell lung cancer markers. Consistent with the knowledge that an antibody response to a single protein is unlikely to be a universal marker, we have been exploring methodology for efficiently identifying and measuring multiple tumor-associated antibodies."

From a universe of 212 candidate markers, the researchers reduced the group to the five most predictive cancer-associated antibody proteins.

"Results show that five phage markers had significant ability to distinguish patient samples from normal control subjects in the training set, said Dr. Li.

Based on their results, they hope to develop a diagnostic assay to assist in early diagnosis of lung cancer.

During development, the researchers tested the proteins associated with predominately advanced-stage lung cancer since those cells were theoretically more likely to express both high levels of and a greater variety of antibodies.

In subsequent studies, they plan to test persons who have early-stage lung cancer against matched control subjects. They hope this will help them determine the ability of antibody profiling to distinguish benign from malignant disease in a group whose potentially cancerous nodules cannot clearly be determined radiographically.

Suzy Martin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>