Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New antibody profiling technique to test for lung cancer

16.11.2005


American Thoracic Society journal news tips for November 2005 (second issue)



Biomedical scientists have revealed a new and promising antibody profiling technique that provides a high degree of early diagnostic accuracy for non-small cell lung cancer cases.

Their research was reported in the second issue of November 2005 of the American Journal of Respiratory and Critical Care Medicine, published by the American Thoracic Society.


Li Zong, Ph.D. of the Division of Pulmonary and Critical Care Medicine, Chandler Medical Center, University of Kentucky, Lexington, along with five associates, has identified five non-small cell lung cancer-associated antibody proteins that achieved 90 percent sensitivity and 95 percent specificity in identifying cancerous versus non-cancerous patient samples.

(Sensitivity indicates the probability that results will be positive when disease is present. Specificity identifies the probability that results will be negative when disease is absent.)

According to the U.S. National Cancer Institute, 160,000 people die each year from lung cancer, making it the number one cause of cancer death in America. Smoking is the primary cause of the disease.

The authors state that presently only 25 percent of new cases of lung cancer are diagnosed at an early stage, when curative surgery is possible.

"Serum tumor markers have the potential of being incorporated into diagnostic and therapeutic practice to improve historically dismal outcomes in non-small cell lung cancer," said Dr. Zong. "Potential uses include early detection or screening, differentiation of benign from malignant disease, differentiating histologies, defining stages and responses to therapy, and defining prognosis.

"These goals have generated considerable interest in identifying predictive tumor markers," Dr. Zong continues. "Although a number of non-small cell lung cancer tumor markers are measurable and a combination of markers can enhance diagnostic value, limited sensitivity and specificity of these markers preclude their wide-spread clinical use. In context, tumor-associated antigens may expand the range of non-small cell lung cancer markers. Consistent with the knowledge that an antibody response to a single protein is unlikely to be a universal marker, we have been exploring methodology for efficiently identifying and measuring multiple tumor-associated antibodies."

From a universe of 212 candidate markers, the researchers reduced the group to the five most predictive cancer-associated antibody proteins.

"Results show that five phage markers had significant ability to distinguish patient samples from normal control subjects in the training set, said Dr. Li.

Based on their results, they hope to develop a diagnostic assay to assist in early diagnosis of lung cancer.

During development, the researchers tested the proteins associated with predominately advanced-stage lung cancer since those cells were theoretically more likely to express both high levels of and a greater variety of antibodies.

In subsequent studies, they plan to test persons who have early-stage lung cancer against matched control subjects. They hope this will help them determine the ability of antibody profiling to distinguish benign from malignant disease in a group whose potentially cancerous nodules cannot clearly be determined radiographically.

Suzy Martin | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>