Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers uncover cellular clues to vitamin A resistance in lung cancer

16.11.2005


Vitamin A deficiency has been associated with the development of lung cancer in laboratory studies. However, clinical trials of natural and synthetic derivatives of vitamin A, called retinoids, for the prevention of lung cancer have been largely unsuccessful in the general population. A new study in the November 16 issue of the Journal of the National Cancer Institute finds that targeting a previously unknown variant of a common retinoid receptor may restore the beneficial effects of retinoids in lung cancer cells.



Retinoids help regulate certain cellular functions in the body, such as cell growth and differentiation. These effects are mediated by retinoic acid receptors (RARs), including RAR-beta. Clinical trials have supported a role for the use of retinoids in the prevention of aerodigestive tract cancers. However, large randomized trials of retinoids and retinoic acid have shown that they are ineffective--and may even be harmful--in preventing lung cancer in smokers. Laboratory studies have found that, as lung cancer develops, RAR-beta becomes silenced, which makes cells resistant to retinoids. This loss of expression of RAR-beta is often seen in the lung cells of smokers.

W. Jeffrey Petty, M.D., previously of Dartmouth Medical School and now a faculty member of the Wake Forest University School of Medicine in Winston-Salem, N.C., and colleagues at Dartmouth set out to discover the mechanisms responsible for RAR-beta silencing and to see if they could restore the expression of RAR-beta using a compound called azacytidine. In the process of studying human bronchial epithelial cells that were resistant to treatment with retinoic acid, they discovered a previously unknown variant of one of the subtypes of RAR-beta.


The variant, called RAR-beta-1’, was expressed in normal lung cells and in cells sensitive to retinoic acid, but not in cells that were resistant to retinoic acid treatment or in lung cancer cells. When they treated cancer cells with azacytidine, RAR-beta-2 expression--but not RAR-beta-1’ expression--was restored, suggesting that the variant has characteristics and functions that are distinctly different from other known forms of RAR-beta and that it may play a role in retinoid resistance.

"Taken together, the data presented here directly implicate a critical role for RAR-beta-1’ in mediating retinoid biologic effects in the lung and perhaps other organ sites," the authors write. "The frequent repression of RAR-beta-1’ in lung carcinogenesis underscores its likely important biologic or clinical role. … Identification of pharmacologic approaches that restore RAR-beta-1’ expression would provide a basis for future retinoid-based combination strategies for lung cancer therapy or chemoprevention."

"The various isoforms of RAR-beta have complex relationships and interactions that appear to influence lung carcinogenesis, as illustrated by studies in mice and humans," Anita L. Sabichi, M.D., from the University of Texas M. D. Anderson Cancer Center in Houston, and colleagues write in an accompanying editorial. "The differential expression and effects of different RAR-beta isoforms are a potential area for molecular-targeted lung cancer chemoprevention, and targeting RAR-beta-1’ to overcome retinoid resistance would be one potentially promising new approach."

Kate Travis | EurekAlert!
Further information:
http://www.oxfordjournals.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>