Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model identifies genes that induce normal skin cells to become abnormal

15.11.2005


Northwestern University researchers have developed a novel, three-dimensional model that allows scientists to observe how interacting with the microenvironment of metastatic melanoma cells induces normal skin cells to become similar to aggressive cancer cells that migrate and spread throughout the body.



The model, developed by Mary J. C. Hendrix and colleagues at Children’s Memorial Research Center, consists of a three-dimensional collagen matrix preconditioned by malignant melanoma cells. Hendrix is president and scientific director of the Children’s Memorial Research Center, professor of pediatrics at Northwestern University Feinberg School of Medicine and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center and the Center for Genetic Medicine at Northwestern University.

The model was described in an article in the Nov. 15 issue of Cancer Research.


"Our findings offer new insights into the influence of the tumor cell microenvironment on the transformation of normal skin cells, as well as on genetic triggering mechanisms and signaling pathways that could be targeted for novel therapeutic strategies to inhibit the spread of melanoma," Hendrix said.

Metastatic cancer cells are characterized by increased tumor cell invasion and migration, as well as an undifferentiated, or "plastic," nature.

The Hendrix lab has hypothesized that this poorly differentiated cell type serves as an advantage to aggressive cancer cells by enhancing their ability to metastasize virtually undetected by the immune system. The group’s current study tested the hypothesis that the microenvironment of metastatic melanoma cells could induce benign skin cells to become cancer-like.

The researchers seeded a particularly aggressive form of human metastatic melanoma cells onto a three-dimensional collagen matrix and allowed the cells to precondition the microenvironment for several days. The malignant melanoma cells were removed and the matrix was left intact.

Then, normal human skin cells were seeded onto the melanoma-preconditioned matrix and were allowed to remain for several days.

After this period, the previously normal cells seeded onto the matrix preconditioned by the metastatic melanoma were reprogrammed to express genes (produce specific gene proteins) associated with a highly plastic cell type similar to the aggressive melanoma cells used in the study.

Removal of the "transdifferentiated" skin cells from the melanoma microenvironment caused the cells to revert to their original appearance.

"There were no significant genetic changes between normal skin cells grown on an untreated matrix and those exposed to a matrix preconditioned by human metastatic melanoma cells, further supporting the hypothesis that "epigenetic" induction of changes in skin cell gene expression is directly related to exposure to the metastatic microenvironment," the authors said.

Hendrix’s co-researchers on the study were Elizabeth A. Seftor; Kevin M. Brown; Lynda Chin; Dawn A. Kirshmann; William W. Wheaton; Alexei Protopopov; Bin Feng; Yoganand Balagurunathan; Jeffrey M. Trent; Brian J. Nickoloff; and Richard E. B. Seftor, from Northwestern University; Harvard Medical School; Tgen; and Loyola University.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>