Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer wasting, muscular dystrophy show common change

15.11.2005


New research shows that a wasting condition responsible for nearly a third of all cancer deaths involves the loss of an essential muscle protein that is also lost in people with muscular dystrophy.



The findings provide a better understanding of cancer wasting, also known as cancer cachexia, a condition first described more than 100 years ago that still lacks effective therapy. The findings also might lead to new ways to diagnose and treat the condition.

The study, led by researchers with The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, is published in the November issue of the journal Cancer Cell.


The research shows that muscle cells lose significant amounts of the protein dystrophin during cancer wasting, and that subtle changes occur in two other proteins associated with dystrophin in the membrane of muscle cells. These proteins form the dystrophin glycoprotein complex (DGC). Dystrophin and DGC are also lost in Duchenne muscular dystrophy.

“The loss of dystrophin and damage to the DGC appear to be key players in the development of both cancer wasting and muscular dystrophy,” says principal investigator Denis C. Guttridge, assistant professor of molecular virology, immunology and cancer genetics and a researcher with the OSU Human Cancer Genetics Program, “although the damage to muscle cells seen in cancer cachexia is not as severe as that seen in muscular dystrophy.”

Muscular dystrophy is a genetic disease that usually begins in childhood and results in the complete loss of dystrophin and the DGC from muscle.

Cancer wasting occurs most often in esophageal, stomach, colorectal, pancreatic, lung, and head and neck cancers. The condition is induced by growth of the tumor, and it results in the loss of both fat and skeletal muscle mass.

Cancer patients who develop wasting usually respond more poorly to therapy and have a shorter life span and lower quality of life.

Guttridge and a group of colleagues began this study after noticing that mice with cancer cachexia showed damage to the membranes of their muscle cells, as in muscular dystrophy. This caused them to suspect that dystrophin and the DGC might be involved.

In muscle cells, the long, thin dystrophin molecule joins the cell skeleton to the DGC located in the membrane. The DGC is a cluster of proteins that extends from the membrane into the surrounding tissue and anchors the muscle cell in place. Dystrophin works like a shock absorber during muscle contraction.

“Dystrophin prevents the cell membrane from being torn by the shear forces produced during muscle contraction,” says first author Swarnali Acharyya, a pre-doctoral student in Guttridge’s laboratory.

The researchers found that dystrophin levels were reduced in the muscles of mice with cancer cachexia, and that two DGC proteins were altered. The researchers then showed that cachexia is accelerated in mice that lack dystrophin and develop cancer. Furthermore, they showed that they could prevent cancer wasting in the mice by causing their muscle cells to over-produce dystrophin.

Last, the researchers tested muscle biopsies from 27 patients with gastrointestinal cancers for dystrophin and DGC. Eleven of the patients were confirmed cachectic, and ten of those showed dramatic reductions in dystrophin and significant loss of the DGC.

Overall, Guttridge says, “our evidence strongly suggests that the loss of dystrophin and the DGC are important contributing factors in tumor-induced muscle wasting.”

Other OSU researchers involved in this study were Matthew E. R. Butchback, Zarife Sahenk, Huating Wang, Motoyasu Saji, Michael Carathers, Matthew D. Ringel, Peter Muscarella, Arthur H. M. Burghes and Jill A. Rafael-Fortney.

Funding from the National Cancer Institute and the V Foundation supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>