Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer wasting, muscular dystrophy show common change

15.11.2005


New research shows that a wasting condition responsible for nearly a third of all cancer deaths involves the loss of an essential muscle protein that is also lost in people with muscular dystrophy.



The findings provide a better understanding of cancer wasting, also known as cancer cachexia, a condition first described more than 100 years ago that still lacks effective therapy. The findings also might lead to new ways to diagnose and treat the condition.

The study, led by researchers with The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, is published in the November issue of the journal Cancer Cell.


The research shows that muscle cells lose significant amounts of the protein dystrophin during cancer wasting, and that subtle changes occur in two other proteins associated with dystrophin in the membrane of muscle cells. These proteins form the dystrophin glycoprotein complex (DGC). Dystrophin and DGC are also lost in Duchenne muscular dystrophy.

“The loss of dystrophin and damage to the DGC appear to be key players in the development of both cancer wasting and muscular dystrophy,” says principal investigator Denis C. Guttridge, assistant professor of molecular virology, immunology and cancer genetics and a researcher with the OSU Human Cancer Genetics Program, “although the damage to muscle cells seen in cancer cachexia is not as severe as that seen in muscular dystrophy.”

Muscular dystrophy is a genetic disease that usually begins in childhood and results in the complete loss of dystrophin and the DGC from muscle.

Cancer wasting occurs most often in esophageal, stomach, colorectal, pancreatic, lung, and head and neck cancers. The condition is induced by growth of the tumor, and it results in the loss of both fat and skeletal muscle mass.

Cancer patients who develop wasting usually respond more poorly to therapy and have a shorter life span and lower quality of life.

Guttridge and a group of colleagues began this study after noticing that mice with cancer cachexia showed damage to the membranes of their muscle cells, as in muscular dystrophy. This caused them to suspect that dystrophin and the DGC might be involved.

In muscle cells, the long, thin dystrophin molecule joins the cell skeleton to the DGC located in the membrane. The DGC is a cluster of proteins that extends from the membrane into the surrounding tissue and anchors the muscle cell in place. Dystrophin works like a shock absorber during muscle contraction.

“Dystrophin prevents the cell membrane from being torn by the shear forces produced during muscle contraction,” says first author Swarnali Acharyya, a pre-doctoral student in Guttridge’s laboratory.

The researchers found that dystrophin levels were reduced in the muscles of mice with cancer cachexia, and that two DGC proteins were altered. The researchers then showed that cachexia is accelerated in mice that lack dystrophin and develop cancer. Furthermore, they showed that they could prevent cancer wasting in the mice by causing their muscle cells to over-produce dystrophin.

Last, the researchers tested muscle biopsies from 27 patients with gastrointestinal cancers for dystrophin and DGC. Eleven of the patients were confirmed cachectic, and ten of those showed dramatic reductions in dystrophin and significant loss of the DGC.

Overall, Guttridge says, “our evidence strongly suggests that the loss of dystrophin and the DGC are important contributing factors in tumor-induced muscle wasting.”

Other OSU researchers involved in this study were Matthew E. R. Butchback, Zarife Sahenk, Huating Wang, Motoyasu Saji, Michael Carathers, Matthew D. Ringel, Peter Muscarella, Arthur H. M. Burghes and Jill A. Rafael-Fortney.

Funding from the National Cancer Institute and the V Foundation supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>