Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene marker may identify need for intense AML therapy

15.11.2005


Researchers here have discovered a new marker that might identify a serious form of acute myeloid leukemia (AML) in people who lack the signs that normally alert doctors that the patient needs intense therapy.



The study was led by researchers with The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. It focused on AML patients whose cancer cells show none of the chromosome alterations that help doctors determine the probable prognosis and the best potential treatment for many people with acute leukemia.

Specifically, the study examined the activity of a gene known as ETS-Related Gene (ERG) in AML cells from these patients.


The findings, published online in the Journal of Clinical Oncology, suggest that when AML cells show high ERG activity, it signals an aggressive form of cancer that requires intense therapy, such as a stem-cell transplant from a matched donor.

Importantly, the study also showed that effects of ERG activity on disease relapse and long-term survival are influenced by the activity levels of other genes.

Last, the study suggests that ERG plays an important role in AML development and could provide a new target for future AML therapy.

The findings come from a Cancer and Leukemia Group B (CALGB) study led by Clara D. Bloomfield, professor of internal medicine, the William G. Pace III Professor in Cancer Research, OSU Cancer Scholar and senior adviser to the OSU Cancer Program.

“This is another of only a few predictive molecular markers for adults with AML who have normal cytogenetics,” says Bloomfield, who led the research that identified the first molecular marker for AML in this group of patients. Normal cytogenetics refers to cells with normal-looking chromosomes.

“If confirmed, our findings should improve survival in these patients and spare those who now receive more intense therapy but don’t need it.”

About 55 percent of AML patients have cancer cells showing chromosome alterations at the time of diagnosis. Doctors rely on these alterations to help determine the best therapy for these patients and the likelihood of remission and cure.

But the cancer cells in about 45 percent of AML patients have normal-looking chromosomes, giving doctors few clues for choosing therapy. Overall about 40 percent of these patients are alive after five years following intensive therapy.

“This means that 60 percent of patients relapse,” Bloomfield says, “and that probably happens because those who relapse have unidentified gene mutations and molecular changes that affect survival and their response to treatment.

“Some examples of these mutations and molecular changes have already been identified. ERG is probably another, and I have no doubt that more will be found.”

The present study tested whether activity levels of ERG are related to remission and survival rates in AML patients with normal cytogenetics.

(Levels of gene activity, or more correctly, gene expression, refers to whether a gene is highly, moderately or not engaged in the production of a protein. Gene-expression levels are determined by measuring the number of RNA copies of the gene that are present in cells. A high number of RNA copies indicates a high level of gene activity; a low number indicates low gene activity.)

The study examined samples of cancer cells from 84 AML patients under age 60 years who had normal cytogenetics. The samples were analyzed for the activity levels of ERG and other genes known to influence treatment response in these patients.

The 84 samples were then divided into four groups according to ERG activity. The group with high ERG activity was compared with the other three groups combined in terms of the patients’ relapse and survival rates.

In general, the group with high ERG did extremely poorly compared with the other groups when consider by itself and in combination with other genes.

When the researchers looked at the likelihood of relapse and the influence of high ERG by itself, they found that 81 percent of high ERG patients relapsed after five years versus 33 percent of patients in the other groups.

However, when the risk of relapse was examined in combination with a second gene known as MLL PTD, patients with high ERG were four times more likely to relapse than the patients with low ERG..

When the researchers considered survival and the influence of ERG alone, they found that the group with high ERG lived an average of 1.2 years following treatment, while the other three groups had not yet reached their average survival when the study ended.

When the researchers then examined the impact of ERG in combination with other factors on survival, they found that the patients who did best had low ERG and low activity of a gene known as BAALC. Seventy percent of these patients were alive after five years.

“This study is important because we have found another gene (ERG) that seems to have a major influence in this large subset of AML patients,” Bloomfield says, “and we’ve identified other genes that alter ERG’s effects on relapse and survival.”

Overall, the evidence strongly indicates that ERG may play a key role in leukemia development. Therefore, a drug that is designed to reduce ERG activity, perhaps in combination with chemotherapy or other targeted therapy, “might prevent these patients from relapsing,” Bloomfield says, “and that would be quite a success.”

Other OSU researchers involved in this study were Guido Marcucci, Claudia D. Baldus, Amy S. Ruppert, Krzysztof Mrozek, Susan P. Whitman, Colin G. Edwards, Danilo Perrotti, Michael A. Caligiuri and Albert de la Chapelle.

Funding from the National Cancer Institute and The Coleman Leukemia Research Foundation supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>