Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound from marine bacteria shows potential as multiple myeloma therapy

15.11.2005


Kills blood cancer cells with low toxicity in preclinical studies



An anti-cancer compound derived from bacteria dwelling in ocean-bottom sediments appears in laboratory tests to be a potent killer of drug-resistant multiple myeloma cells, and potentially with less toxicity than current treatments, report Dana-Farber Cancer Institute researchers in the November issue of Cancer Cell.

The experimental compound, NPI-0052, has been found to block or inhibit cancer cells’ proteasomes from working effectively. The proteasome work as a cell’s "garbage disposal," chewing up and disposing of old, unwanted proteins. With their proteasome jammed, cells die from the backup of damaged proteins.


"Proteasome inhibition is a key therapeutic target and bortezomib (Velcade tm) was the first in a new class of compounds in multiple myeloma. NPI-0052 is a novel proteasome inhibitor with a chemical structure and action that is distinct from bortezomib, and has the promise of being even more effective for patients," says Kenneth Anderson, MD, director of the Jerome Lipper Multiple Myeloma Center at Dana-Farber, and senior author of the report.

The compound will be moved into Phase I clinical trials in early 2006, say officials of Nereus Pharmaceuticals in San Diego, the developer of NPI-0052. The compound will be tested as a single agent and subsequently in combination with other treatments.

Multiple myeloma is a currently incurable cancer of the bone marrow that causes a plunge in the production of vital red and white blood cells. Although relatively rare, it is the second most common type of blood cancer and accounts for 11,000 deaths annually in the United States. Bortezomib, approved by the Food and Drug Administration in 2003 for relapsed myeloma patients and subsequently for patients who have received at least one prior treatment, demonstrated in clinical trials that it extended the time to disease progression and also improved survival.

Though less toxic than conventional chemotherapy, bortezomib does have significant side effects in some myeloma patients, including altered blood counts and nerve pain. In some patients, the disease can be resistant or become resistant to bortezomib.

Because NPI-0052 and bortezomib attack the same intracellular target in different ways, the Dana-Farber researchers contend that combining these two agents might be more effective than using either therapy alone – and be better tolerated by patients as well.

In preclinical studies, NPI-0052 blocks a wider range of proteasome activities than bortezomib, say the researchers, and works at lower doses. NPI-0052 also appears to be less toxic to normal cells. Bortezomib is currently given by intravenous infusion. "NPI-0052 can be given orally, although the first clinical trials will be using the intravenous route," says Paul Richardson, M.D, who is also a co-author in this study and will be leading the Phase-I clinical trial in myeloma at Dana-Farber.

NPI-0052 was discovered by William Fenical, PhD, and his collaborators at The Scripps Institute of Oceanography during the fermentation of Salinispora, a new class of marine gram-positive bacteria identified in sediment samples from the ocean floor. The substance has shown strong anticancer properties in laboratory tests. Nereus Pharmaceuticals holds an exclusive license to the compound for drug development.

Experiments with NPI-0052 began at Dana-Farber in 2003, said Dharminder Chauhan, PhD, lead author of the paper along with Laurence Catley, PhD. When added to cells from patients whose disease was resistant to both standard drugs and bortezomib, the compound efficiently killed the cells. Analyses showed that NPI-0052 and bortezomib express different profiles for inhibiting the three major proteasome activities.

In mice implanted with human myeloma tumor cells, NPI-0052 was well tolerated, prolonged survival and significantly reduced the rate of cancer recurrences. Because NPI-0052 and bortezomib block the proteasome in different ways, the researchers tested them together on myeloma cells. They found that the cancer cells were killed more effectively by the combination than either compound alone – without additional toxicity to normal cells.

"This is a laboratory advance that shows clinical promise," says Dr. Chauhan. "We think this is going to be the ’2006 Model’ of proteasome inhibitors."

Michael Palladino, Jr., PhD, chief technical officer of Nereus Pharmaceuticals, said that the company plans to file an investigational new drug (IND) application by the end of the year, with trials at several centers – including Dana-Farber – starting in early 2006.

Teresa Herbert | EurekAlert!
Further information:
http://www.dana-farber.org

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>