Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound from marine bacteria shows potential as multiple myeloma therapy

15.11.2005


Kills blood cancer cells with low toxicity in preclinical studies



An anti-cancer compound derived from bacteria dwelling in ocean-bottom sediments appears in laboratory tests to be a potent killer of drug-resistant multiple myeloma cells, and potentially with less toxicity than current treatments, report Dana-Farber Cancer Institute researchers in the November issue of Cancer Cell.

The experimental compound, NPI-0052, has been found to block or inhibit cancer cells’ proteasomes from working effectively. The proteasome work as a cell’s "garbage disposal," chewing up and disposing of old, unwanted proteins. With their proteasome jammed, cells die from the backup of damaged proteins.


"Proteasome inhibition is a key therapeutic target and bortezomib (Velcade tm) was the first in a new class of compounds in multiple myeloma. NPI-0052 is a novel proteasome inhibitor with a chemical structure and action that is distinct from bortezomib, and has the promise of being even more effective for patients," says Kenneth Anderson, MD, director of the Jerome Lipper Multiple Myeloma Center at Dana-Farber, and senior author of the report.

The compound will be moved into Phase I clinical trials in early 2006, say officials of Nereus Pharmaceuticals in San Diego, the developer of NPI-0052. The compound will be tested as a single agent and subsequently in combination with other treatments.

Multiple myeloma is a currently incurable cancer of the bone marrow that causes a plunge in the production of vital red and white blood cells. Although relatively rare, it is the second most common type of blood cancer and accounts for 11,000 deaths annually in the United States. Bortezomib, approved by the Food and Drug Administration in 2003 for relapsed myeloma patients and subsequently for patients who have received at least one prior treatment, demonstrated in clinical trials that it extended the time to disease progression and also improved survival.

Though less toxic than conventional chemotherapy, bortezomib does have significant side effects in some myeloma patients, including altered blood counts and nerve pain. In some patients, the disease can be resistant or become resistant to bortezomib.

Because NPI-0052 and bortezomib attack the same intracellular target in different ways, the Dana-Farber researchers contend that combining these two agents might be more effective than using either therapy alone – and be better tolerated by patients as well.

In preclinical studies, NPI-0052 blocks a wider range of proteasome activities than bortezomib, say the researchers, and works at lower doses. NPI-0052 also appears to be less toxic to normal cells. Bortezomib is currently given by intravenous infusion. "NPI-0052 can be given orally, although the first clinical trials will be using the intravenous route," says Paul Richardson, M.D, who is also a co-author in this study and will be leading the Phase-I clinical trial in myeloma at Dana-Farber.

NPI-0052 was discovered by William Fenical, PhD, and his collaborators at The Scripps Institute of Oceanography during the fermentation of Salinispora, a new class of marine gram-positive bacteria identified in sediment samples from the ocean floor. The substance has shown strong anticancer properties in laboratory tests. Nereus Pharmaceuticals holds an exclusive license to the compound for drug development.

Experiments with NPI-0052 began at Dana-Farber in 2003, said Dharminder Chauhan, PhD, lead author of the paper along with Laurence Catley, PhD. When added to cells from patients whose disease was resistant to both standard drugs and bortezomib, the compound efficiently killed the cells. Analyses showed that NPI-0052 and bortezomib express different profiles for inhibiting the three major proteasome activities.

In mice implanted with human myeloma tumor cells, NPI-0052 was well tolerated, prolonged survival and significantly reduced the rate of cancer recurrences. Because NPI-0052 and bortezomib block the proteasome in different ways, the researchers tested them together on myeloma cells. They found that the cancer cells were killed more effectively by the combination than either compound alone – without additional toxicity to normal cells.

"This is a laboratory advance that shows clinical promise," says Dr. Chauhan. "We think this is going to be the ’2006 Model’ of proteasome inhibitors."

Michael Palladino, Jr., PhD, chief technical officer of Nereus Pharmaceuticals, said that the company plans to file an investigational new drug (IND) application by the end of the year, with trials at several centers – including Dana-Farber – starting in early 2006.

Teresa Herbert | EurekAlert!
Further information:
http://www.dana-farber.org

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>