Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound from marine bacteria shows potential as multiple myeloma therapy

15.11.2005


Kills blood cancer cells with low toxicity in preclinical studies



An anti-cancer compound derived from bacteria dwelling in ocean-bottom sediments appears in laboratory tests to be a potent killer of drug-resistant multiple myeloma cells, and potentially with less toxicity than current treatments, report Dana-Farber Cancer Institute researchers in the November issue of Cancer Cell.

The experimental compound, NPI-0052, has been found to block or inhibit cancer cells’ proteasomes from working effectively. The proteasome work as a cell’s "garbage disposal," chewing up and disposing of old, unwanted proteins. With their proteasome jammed, cells die from the backup of damaged proteins.


"Proteasome inhibition is a key therapeutic target and bortezomib (Velcade tm) was the first in a new class of compounds in multiple myeloma. NPI-0052 is a novel proteasome inhibitor with a chemical structure and action that is distinct from bortezomib, and has the promise of being even more effective for patients," says Kenneth Anderson, MD, director of the Jerome Lipper Multiple Myeloma Center at Dana-Farber, and senior author of the report.

The compound will be moved into Phase I clinical trials in early 2006, say officials of Nereus Pharmaceuticals in San Diego, the developer of NPI-0052. The compound will be tested as a single agent and subsequently in combination with other treatments.

Multiple myeloma is a currently incurable cancer of the bone marrow that causes a plunge in the production of vital red and white blood cells. Although relatively rare, it is the second most common type of blood cancer and accounts for 11,000 deaths annually in the United States. Bortezomib, approved by the Food and Drug Administration in 2003 for relapsed myeloma patients and subsequently for patients who have received at least one prior treatment, demonstrated in clinical trials that it extended the time to disease progression and also improved survival.

Though less toxic than conventional chemotherapy, bortezomib does have significant side effects in some myeloma patients, including altered blood counts and nerve pain. In some patients, the disease can be resistant or become resistant to bortezomib.

Because NPI-0052 and bortezomib attack the same intracellular target in different ways, the Dana-Farber researchers contend that combining these two agents might be more effective than using either therapy alone – and be better tolerated by patients as well.

In preclinical studies, NPI-0052 blocks a wider range of proteasome activities than bortezomib, say the researchers, and works at lower doses. NPI-0052 also appears to be less toxic to normal cells. Bortezomib is currently given by intravenous infusion. "NPI-0052 can be given orally, although the first clinical trials will be using the intravenous route," says Paul Richardson, M.D, who is also a co-author in this study and will be leading the Phase-I clinical trial in myeloma at Dana-Farber.

NPI-0052 was discovered by William Fenical, PhD, and his collaborators at The Scripps Institute of Oceanography during the fermentation of Salinispora, a new class of marine gram-positive bacteria identified in sediment samples from the ocean floor. The substance has shown strong anticancer properties in laboratory tests. Nereus Pharmaceuticals holds an exclusive license to the compound for drug development.

Experiments with NPI-0052 began at Dana-Farber in 2003, said Dharminder Chauhan, PhD, lead author of the paper along with Laurence Catley, PhD. When added to cells from patients whose disease was resistant to both standard drugs and bortezomib, the compound efficiently killed the cells. Analyses showed that NPI-0052 and bortezomib express different profiles for inhibiting the three major proteasome activities.

In mice implanted with human myeloma tumor cells, NPI-0052 was well tolerated, prolonged survival and significantly reduced the rate of cancer recurrences. Because NPI-0052 and bortezomib block the proteasome in different ways, the researchers tested them together on myeloma cells. They found that the cancer cells were killed more effectively by the combination than either compound alone – without additional toxicity to normal cells.

"This is a laboratory advance that shows clinical promise," says Dr. Chauhan. "We think this is going to be the ’2006 Model’ of proteasome inhibitors."

Michael Palladino, Jr., PhD, chief technical officer of Nereus Pharmaceuticals, said that the company plans to file an investigational new drug (IND) application by the end of the year, with trials at several centers – including Dana-Farber – starting in early 2006.

Teresa Herbert | EurekAlert!
Further information:
http://www.dana-farber.org

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>