Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers lead team that discovers role of dendritic cells in childhood autoimmune disease

14.11.2005


Provides new strategy for designing better treatments

Mayo Clinic researchers, working with colleagues at the University of Minnesota and University of Pittsburgh, are the first to describe a new role for a specialized cell of the immune system in children suffering from a rare muscle-damaging disease known as juvenile dermatomyositis (JDM). The specialized cells, called dendritic cells, have never before been found inside muscle tissue of JDM patients -- a discovery that suggests they are tightly linked to initiation of the disease process. The finding opens new possibilities for designing better treatments for JDM, and possibly for other related diseases such as multiple sclerosis, rheumatoid arthritis and lupus.

The Mayo Clinic-led research team report will be presented Nov. 14 as part of the American College of Rheumatology’s annual meeting in San Diego, Calif., held Nov. 12-17.



Significance of the Research

Mayo Clinic researchers compared samples of muscle tissue from children with JDM to children with other disorders. Their findings are important not only for determining what causes JDM and designing new treatments for it, but for understanding an entire class of diseases in which the body’s immune system gets mixed up and attacks "self" as if it were a foreigner, or "nonself." These are known as autoimmune diseases, and there are about 80 distinct autoimmune disorders. As a group, they are relatively common and include rheumatoid arthritis, lupus and multiple sclerosis. Autoimmune disorders share the general trait of the body failing to recognize itself, and erroneously mounting an immune attack that destroys function. Insights gained in JDM may possibly be applied to other autoimmune diseases.

Explains Ann Reed, M.D., Mayo Clinic pediatric rheumatologist/immunologist who led the investigation: "Under the microscope, it looked so dramatic to see the dendritic cells maturing in the muscle tissue and then migrating out into the bloodstream -- and to realize it was a process which no one has ever documented before. And it was a surprise. Usually few dendritic cells reside in muscle as immature cells; they sort of hang out in case they’re needed in an immune response. But, we determined that they are actually maturing in the muscle tissues in response to something in the muscle tissue itself."

This finding is important because a central question in JDM research has always been: Do the dendritic cells get activated in muscle tissue? Or, do they get activated outside of the tissue? The research by Mayo Clinic and collaborators provides the first proof that the dendritic cells get activated inside muscle tissues and then may move out into the bloodstream. Says Dr. Reed: "When you think about it as a clinician, it’s really exciting because it shows what is happening in the muscle that starts the disease -- and holds out the possibility that it is maybe something that we can turn off in new treatments we develop by targeting the mechanism in the muscle tissue. And that’s really neat stuff for our patients."

About JDM

JDM is a rare (5 in 1 million children) autoimmune disorder of young children characterized by inflammation of the blood vessels under the muscle and skin. This results in muscle damage, as well as in tissue changes of skin over the eyelids, finger joints and knuckles. Symptoms appear gradually and include: muscle pain and tenderness; difficulty swallowing, which results in weight loss; irritability; fatigue; fever; and rash around the eyelids, finger joints, knuckles, elbows, ankles or knees.

Diagnosis may involve the following: blood tests to detect muscle enzymes and markers of inflammation; an electromyography (EMG) to assess nerve or muscle damage; muscle biopsy for examination; X-rays; and MRI. While there is no cure for JDM, there are treatment options. They include medications to reduce inflammation and skin rashes; physical and occupational therapy to improve muscle function; and nutritional support. Children with JDM may suffer organ failure in the same way transplant patients often do when their bodies fail to accept donated organs in graft-versus-host disease.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>