Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers lead team that discovers role of dendritic cells in childhood autoimmune disease

14.11.2005


Provides new strategy for designing better treatments

Mayo Clinic researchers, working with colleagues at the University of Minnesota and University of Pittsburgh, are the first to describe a new role for a specialized cell of the immune system in children suffering from a rare muscle-damaging disease known as juvenile dermatomyositis (JDM). The specialized cells, called dendritic cells, have never before been found inside muscle tissue of JDM patients -- a discovery that suggests they are tightly linked to initiation of the disease process. The finding opens new possibilities for designing better treatments for JDM, and possibly for other related diseases such as multiple sclerosis, rheumatoid arthritis and lupus.

The Mayo Clinic-led research team report will be presented Nov. 14 as part of the American College of Rheumatology’s annual meeting in San Diego, Calif., held Nov. 12-17.



Significance of the Research

Mayo Clinic researchers compared samples of muscle tissue from children with JDM to children with other disorders. Their findings are important not only for determining what causes JDM and designing new treatments for it, but for understanding an entire class of diseases in which the body’s immune system gets mixed up and attacks "self" as if it were a foreigner, or "nonself." These are known as autoimmune diseases, and there are about 80 distinct autoimmune disorders. As a group, they are relatively common and include rheumatoid arthritis, lupus and multiple sclerosis. Autoimmune disorders share the general trait of the body failing to recognize itself, and erroneously mounting an immune attack that destroys function. Insights gained in JDM may possibly be applied to other autoimmune diseases.

Explains Ann Reed, M.D., Mayo Clinic pediatric rheumatologist/immunologist who led the investigation: "Under the microscope, it looked so dramatic to see the dendritic cells maturing in the muscle tissue and then migrating out into the bloodstream -- and to realize it was a process which no one has ever documented before. And it was a surprise. Usually few dendritic cells reside in muscle as immature cells; they sort of hang out in case they’re needed in an immune response. But, we determined that they are actually maturing in the muscle tissues in response to something in the muscle tissue itself."

This finding is important because a central question in JDM research has always been: Do the dendritic cells get activated in muscle tissue? Or, do they get activated outside of the tissue? The research by Mayo Clinic and collaborators provides the first proof that the dendritic cells get activated inside muscle tissues and then may move out into the bloodstream. Says Dr. Reed: "When you think about it as a clinician, it’s really exciting because it shows what is happening in the muscle that starts the disease -- and holds out the possibility that it is maybe something that we can turn off in new treatments we develop by targeting the mechanism in the muscle tissue. And that’s really neat stuff for our patients."

About JDM

JDM is a rare (5 in 1 million children) autoimmune disorder of young children characterized by inflammation of the blood vessels under the muscle and skin. This results in muscle damage, as well as in tissue changes of skin over the eyelids, finger joints and knuckles. Symptoms appear gradually and include: muscle pain and tenderness; difficulty swallowing, which results in weight loss; irritability; fatigue; fever; and rash around the eyelids, finger joints, knuckles, elbows, ankles or knees.

Diagnosis may involve the following: blood tests to detect muscle enzymes and markers of inflammation; an electromyography (EMG) to assess nerve or muscle damage; muscle biopsy for examination; X-rays; and MRI. While there is no cure for JDM, there are treatment options. They include medications to reduce inflammation and skin rashes; physical and occupational therapy to improve muscle function; and nutritional support. Children with JDM may suffer organ failure in the same way transplant patients often do when their bodies fail to accept donated organs in graft-versus-host disease.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>