Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variants predict heart muscle damage after cardiac surgery

14.11.2005


Duke University Medical Center researchers have found that patients with six specific variants of genes involved in the body’s immune response are significantly more likely to suffer damage of heart tissue after cardiac surgery.



These findings are important because current analytical methods cannot reliably predict who will be likely to suffer from myocardial infarction (MI), or heart tissue death after cardiac surgery. It is estimated that between 7 and 15 percent of patients undergoing coronary bypass surgery will suffer from a subsequent MI, the researchers said.

"We have identified six gene variants, or polymorphisms, that are significantly associated with the incidence of post-operative myocardial infarction following cardiac surgery," said Duke cardiothoracic anesthesiolologist Mihai Podgoreanu, M.D., who presented the results of the Duke study Nov. 13, 2005, during the annual scientific session of the American Heart Association (AHA). The analysis was supported by the National Institutes of Health and the AHA. "Collectively, these variants can explain about 75 percent of the variability in heart damage in patients undergoing surgery."


"These findings should help physicians identify those patients who are at highest risk before surgery, so they can better inform patients and take appropriate precautions during and after surgery," Podgoreanu continued. "Additionally, these findings validate that specific proteins are involved in the damage to heart tissue, which gives us rational targets for potential new drugs."

Of the six polymorphisms, four are directly associated with the damage, while the other two polymorphisms are found in genes that would normally have a protective effect.

During a bypass procedure, the heart is typically stopped for a period of time to allow a stable field of operation for the surgeons, and its function replaced by the heart-lung machine. During this time, the heart is bathed in a cold slushy solution to reduce the heart’s metabolic needs.

"However, despite all our best efforts to protect the heart during surgery, there is always some damage as the heart re-warms and the blood flow returns to the muscle," Podgoreanu said. This damage is known as reperfusion injury.

Physicians can determine the extent of damage to heart muscle by measuring the levels of a specific enzyme known as creatine kinase-MB (CK-MB), which leaks into the bloodstream as heart muscle cell walls break apart as a result of damage or death.

The researchers began by identifying 48 known polymorphisms of 23 candidate genes that are all involved with the body’s immune response. They then enrolled 432 patients undergoing cardiac surgery. Blood samples were taken 24 hours after surgery. Patients were considered to have suffered a post-operative MI if their CK-MB levels were at least ten times higher than the upper limit of normal. Of the patients, 52, or 12 percent, were considered to have suffered an MI.

Using a two-step genetic analysis, the researchers looked for genetic difference between those patients who suffered a post-operative MI and those who did not.

"We found it interesting that each of the six polymorphisms individually had only a modest effect, but when taken together, the combined effect was significant," Podgoreanu said. "If an individual is unfortunate enough to have this combination of genetic factors, they will likely experience an exaggerated and negative response to reperfusion."

Specifically, the deleterious polymorphisms were in genes that code for the production of four different proteins: interleukin-6 (IL-6), C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM1) and lipopolysaccharide-binding protein (LBP).

IL-6 is a protein that regulates the intensity of the immune response, and CRP is a protein released into the bloodstream as a natural reaction to infection, fever or other injury. ICAM-1 allows the white cells to attach to the inner lining of the blood vessels where they inflict damage. LBP regulates the body’s response to bacteria normally living in the gastrointestinal tract that can release endotoxins into the bloodstream as a result of the action of the heart-lung machine.

The final polymorphism – in a gene that codes for the enzyme catalase – appears to be involved in mediating the effects of oxidative stress. The normal version of the gene produces proteins that can blunt the negative effects of oxygen free radicals, while the polymorphism is unable to do so effectively. It is well established that heart muscle cells are placed under oxidative stress during reperfusion.

Podgoreanu’s paper is one of five finalists for the AHA’s annual Vivien Thomas Young Investigator award. The winner will be announced at the meeting.

Earlier this year, members of the same research team found that patients with a different set of polymorphisms were at a two to four times more likely to suffer kidney damage as a result of major heart surgery. In another study this year, the team found variants of genes that control clotting and the contractility of blood vessels can double the ability to predict those heart surgery patients at greatest risk of bleeding after surgery.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>