Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cord blood cells may widen treatment window for stroke

14.11.2005


Preclinical findings presented at Society for Neuroscience meeting



An experimental treatment that spares disability from acute stroke may be delivered much later than the current three-hour treatment standard – a potential advance needed to benefit more stroke victims.

Researchers at the University of South Florida found that human umbilical cord blood cells administered to rats two days following a stroke greatly curbed the brain’s inflammatory response, reducing the size of the stroke and resulting in greatly improved recovery. The rats’ inflammatory response to injury from stroke peaked 48 hours after the brain attack, which was when intravenous delivery of the cells appeared most beneficial.


"We were very surprised," said principal investigator Alison Willing, PhD, a neuroscientist at the USF Center of Excellence for Aging and Brain Repair. "In some animals, the stroke initially damaged half the brain, but after treatment with the cord blood cells they were functioning normally.

"These findings show we are able to rescue neurons at a time when most research suggests they are already dead."

Dr. Willing presented the preliminary findings Nov. 12 at the Society for Neuroscience annual meeting in Washington, DC.

The only drug currently approved for ischemic stroke treatment is tPA (tissue plasminogen activator), which breaks up blood clots – the cause of most strokes. However, tPA must be given within three hours following a stroke to be effective and few patients arrive at the hospital quickly enough to receive it. Even when a patient meets the recommended three-hour treatment criteria, smaller hospitals often lack ready access to a CT scan, a test needed to rule out a hemorrhagic stroke caused by a burst blood vessel. The drug can worsen this less common type of stroke.

"New and more flexible treatments are needed to help more patients," Dr. Willing said. "Cord blood treatment in rats is successful in alleviating, even eliminating, the disabling effects of both ischemic and hemorrhagic stroke. What’s more, the treatment can be delivered much later than the current strict three-hour therapeutic window."

The USF study challenges the notion that nerve cells inevitably die quickly in the core region of the brain most severely deprived of oxygen and nutrients when a stroke hits. Instead, the researchers suggest, many nerve cells within ground zero of the attack, like those in mild to moderately damaged outlying areas, may succumb over several days through a slower, more orderly process known as apoptosis, or programmed cell death.

"This delayed death would permit more time to deliver neuron-sparing treatments than originally thought," Dr. Willing said.

The USF researchers continue to investigate the ways cord blood cells aid stroke recovery in animals, and will begin a study to determine the timing of brain inflammatory responses in acute stroke patients.

Researchers working with Dr. Willing were Jennifer Newcomb, Ted Ajmo, Lisa Collier, Cyndy Davis Sanberg, PhD; Keith Pennypacker, PhD; and Paul R. Sanberg, PhD, DSc. The USF study was conducted with Saneron CCEL Therapeutics, a USF-spinout biotechnology company developing cell therapies for deadly and debilitating disorders. Dr. Sanberg is a cofounder of Saneron CCEL, and Dr. Willing is a consultant.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.hsc.usf.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>