Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lateral thinking produces first map of gene transmission

11.11.2005


A University of Queensland study mapping the evolution of genes has shed light on the role of gene transfer in bacterial diseases.



The study, published recently in Proceedings of the National Academy of Sciences USA, was conducted by three scientists at UQ’s Institute for Molecular Bioscience.

Dr Robert Beiko, Professor Mark Ragan and Mr Timothy Harlow examined the genomes of 144 species of bacteria, in an effort to map how genes are shared between bacteria.


The study highlights lateral genetic transfer – a process where genes are transferred between organisms that aren’t directly related.

The map has traced the paths of lateral gene transfer, from the bacteria that donated the genes to the ones that received them.

Their results clearly show genetic modification of organisms by lateral transfer is a widespread natural phenomenon, and it can occur even between distantly related organisms, although particularly those which live in a similar environment.

The discovery that lateral transfer is so widespread shows how disease-causing bacteria can quickly become resistant to treatment: a bacterium with genes that confer drug resistance can, through lateral transfer, rapidly spread them to other bacteria, instead of just to their own offspring.

From the early days of the science of genetics, it was assumed that transfer of genes could only be vertical, i.e. from parents to offspring.

But more recently, scientists have become aware of lateral genetic transfer, which occurs in bacteria through methods such as bacterial viruses and direct contact between cells.

"The idea of lateral genetic transfer has been around for a few years, but what was missing was a good, hard, rigorous look at it," Professor Ragan said.

"Previous studies have either been small scale, or used statistical shortcut methods."

The study is believed to be the largest biologically inspired computation carried out in Australia, with over 500, 000 hours of computing.

The scientists used the national supercomputing facility of the Australian Partnership in Advanced Computing.

Prof Mark Ragan | EurekAlert!

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>