Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Olfactory input dominates reproductive behavior in mice

11.11.2005


New research indicates mouse nose detects most pheromones governing reproduction



Scientists at Harvard University have found strong signs that the pheromones driving reproduction and fertility in mice are detected primarily by the nose -- not by the specialized vomeronasal system that many researchers had suspected of receiving and processing the bodily chemicals that govern mating behavior. The unexpected finding may settle an ongoing scientific debate by providing evidence that key reproductive behaviors in mice arise predominantly, if not exclusively, from olfactory input instead of input from the vomeronasal, visual or auditory senses.

The results, from a team led by Harvard biologist Catherine Dulac, appear on the web site of the journal Cell this week, and will be published in the journal’s Nov. 18 issue.


"It’s always interesting when there is a surprise finding," says Dulac, professor of molecular and cellular biology in Harvard’s Faculty of Arts and Sciences and an investigator with the Howard Hughes Medical Institute. "Most biology textbooks now say that pheromones affecting reproductive behavior in non-human mammals are detected by the vomeronasal organ, while the nose processes all other odors. Our work suggests quite convincingly that the mouse nose processes both pheromones and other scents, and in fact provides much or all of the chemosensory input that drives mating."

Dulac and her colleagues made pioneering use of a retrograde pseudorabies virus, which is capable of traveling across the synapses separating neurons but does so in a direction opposite to that in which nerve impulses ordinarily travel. By injecting fluorescently marked virus into a mating center in the mouse hypothalamus -- a collection of neurons that produce luteinizing hormone-releasing hormone (LHRH), which manages the development and function of mammalian gonads -- the scientists could trace backward to find the sensory receptors that first detect pheromones, species- and gender-specific chemical cues that drive animal mating, as well as fighting and territorial behavior.

The researchers expected to find neurons in the vomeronasal organ that receive pheromones and then activate hard-wired brain circuits such as those that express LHRH. Instead, they found that almost all the neurons feeding into the LHRH-making region of the hypothalamus appeared to originate in the nose. The scientists also found that mice with compromised olfactory function show dramatically impaired mating behavior; no reproductive effects were seen in mice lacking vomeronasal signaling.

"Strikingly, our study failed to document any anatomical or functional connectivity between LHRH-expressing neurons and structures of the vomeronasal pathway, thus contradicting the established notion that vomeronasal activity exerts a direct influence on LHRH neuronal activity, and in turn, on the endocrine control of reproduction," Dulac says. "Although not previously documented, it appears that olfactory activity plays an essential role in eliciting male mating behavior with females."

Dulac says this finding helps explain a paradox in humans, which lack functional vomeronasal systems. All vomeronasal-related mouse genes are inactive in humans, but this may not matter if pheromones can be sensed by the nose in humans as in mice.

The exact nature of vomeronasal input to the hypothalamus’s reproductive centers remains unclear, although research has shown clearly that some neurons adjacent to the brain’s LHRH-producing cells -- cells that may also play a role in reproduction -- do receive vomeronasal stimuli. The current finding is consistent with a 2003 model proposed by Dulac and colleagues which held that non-vomeronasal cues may be sufficient to trigger mating, while the vomeronasal system itself functions to ensure that mating is gender-specific.

Dulac’s co-authors on the Cell paper are Hayan Yoon, a graduate student in the Department of Molecular and Cellular Biology at Harvard, and L.W. Enquist of Princeton University’s Department of Molecular Biology. In addition to funding from the Howard Hughes Medical Institute, their research was supported by the National Institutes of Health.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>