Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Olfactory input dominates reproductive behavior in mice


New research indicates mouse nose detects most pheromones governing reproduction

Scientists at Harvard University have found strong signs that the pheromones driving reproduction and fertility in mice are detected primarily by the nose -- not by the specialized vomeronasal system that many researchers had suspected of receiving and processing the bodily chemicals that govern mating behavior. The unexpected finding may settle an ongoing scientific debate by providing evidence that key reproductive behaviors in mice arise predominantly, if not exclusively, from olfactory input instead of input from the vomeronasal, visual or auditory senses.

The results, from a team led by Harvard biologist Catherine Dulac, appear on the web site of the journal Cell this week, and will be published in the journal’s Nov. 18 issue.

"It’s always interesting when there is a surprise finding," says Dulac, professor of molecular and cellular biology in Harvard’s Faculty of Arts and Sciences and an investigator with the Howard Hughes Medical Institute. "Most biology textbooks now say that pheromones affecting reproductive behavior in non-human mammals are detected by the vomeronasal organ, while the nose processes all other odors. Our work suggests quite convincingly that the mouse nose processes both pheromones and other scents, and in fact provides much or all of the chemosensory input that drives mating."

Dulac and her colleagues made pioneering use of a retrograde pseudorabies virus, which is capable of traveling across the synapses separating neurons but does so in a direction opposite to that in which nerve impulses ordinarily travel. By injecting fluorescently marked virus into a mating center in the mouse hypothalamus -- a collection of neurons that produce luteinizing hormone-releasing hormone (LHRH), which manages the development and function of mammalian gonads -- the scientists could trace backward to find the sensory receptors that first detect pheromones, species- and gender-specific chemical cues that drive animal mating, as well as fighting and territorial behavior.

The researchers expected to find neurons in the vomeronasal organ that receive pheromones and then activate hard-wired brain circuits such as those that express LHRH. Instead, they found that almost all the neurons feeding into the LHRH-making region of the hypothalamus appeared to originate in the nose. The scientists also found that mice with compromised olfactory function show dramatically impaired mating behavior; no reproductive effects were seen in mice lacking vomeronasal signaling.

"Strikingly, our study failed to document any anatomical or functional connectivity between LHRH-expressing neurons and structures of the vomeronasal pathway, thus contradicting the established notion that vomeronasal activity exerts a direct influence on LHRH neuronal activity, and in turn, on the endocrine control of reproduction," Dulac says. "Although not previously documented, it appears that olfactory activity plays an essential role in eliciting male mating behavior with females."

Dulac says this finding helps explain a paradox in humans, which lack functional vomeronasal systems. All vomeronasal-related mouse genes are inactive in humans, but this may not matter if pheromones can be sensed by the nose in humans as in mice.

The exact nature of vomeronasal input to the hypothalamus’s reproductive centers remains unclear, although research has shown clearly that some neurons adjacent to the brain’s LHRH-producing cells -- cells that may also play a role in reproduction -- do receive vomeronasal stimuli. The current finding is consistent with a 2003 model proposed by Dulac and colleagues which held that non-vomeronasal cues may be sufficient to trigger mating, while the vomeronasal system itself functions to ensure that mating is gender-specific.

Dulac’s co-authors on the Cell paper are Hayan Yoon, a graduate student in the Department of Molecular and Cellular Biology at Harvard, and L.W. Enquist of Princeton University’s Department of Molecular Biology. In addition to funding from the Howard Hughes Medical Institute, their research was supported by the National Institutes of Health.

Steve Bradt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>