Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird flu virus triggers worse inflammation in human lung cells than human flu viruses

11.11.2005


Scientists might have identified one of the reasons why the bird flu virus H5N1 is so deadly to humans. A study published today in the open access journal Respiratory Research reveals that, in human cells, the virus can trigger levels of inflammatory proteins more than 10 times higher than the common human flu virus H1N1. This might contribute to the unusual severity of the disease caused by H5N1 in humans, which can escalate into life-threatening pneumonia and acute respiratory distress.



Michael Chan and colleagues from the University of Hong Kong and collaborators in Vietnam, studied the levels of a subset of the pro-inflammatory proteins called ’cytokines’ and ’chemokines’, induced by the virus H5N1 in human lung cells, in vitro. The authors compared protein levels induced by strains of the H5N1 virus that had appeared in Hong Kong in 1997 (H5N1/97) and Vietnam in 2004 (H5N1/04), with levels induced by the human flu virus H1N1.

Their results show that H5N1 is a much more potent inducer of pro-inflammatory proteins than H1N1. Twenty-four hours after infection with H5N1/04, the levels of the chemokine IP-10 in bronchial epithelial cells reach 2200 pg/ml, whereas in cells infected with H1N1 they only reach 200pg/ml. In H5N1/97-infected cells, IP-10 levels reach 1750 pg/ml. Similar results were found for other chemokines and cytokines.


Chemokines and cytokines are the "messengers of the immune system" and are critical in coordinating and regulating the immune response. Altering this balance is likely to lead to an uncontrolled inflammatory response in the lung and probably explains, at least in part, the severe lung inflammation associated with avian flu virus H5N1.

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>