Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuberculosis: Diagnosis Will Be More Precise

11.11.2005


A diagnostic approach will allow to quickly and precisely identify the enemy - tuberculosis culture pathogene, the approach being based on the so-called subtraction hybridization. How it can help to identify ‘personality’ of a dangerous bacterium was discussed by researchers from Moscow with their colleagues at the II International Conference “Molecular Medicine and Biosafety” in late October this year.



For smatterers the notion of tuberculosis – is necessary and sufficient for definition of the disease and its pathogene, tubercle bacillus or, in other words, Koch’s bacillus, and has long ago lost romantic veil of Chekhov’s and Dostoyevsky’s hectic heroines. However, specialists know well that considerable genetic variability is typical of the Mycobacterium tuberculosis bacteria population. Simply speaking, these pathogenes may be very different. On the one hand, according to the force of influence on human beings: some pathogens are more, figuratively speaking, ‘wicked’ (virulent), others – are less wicked. It is necessary to know where the difference lies – what changes in the microorganism’s genome cause changes in its properties, including changes in its virulence.

Furthermore, tuberculosis pathogens, like cockroaches, are able to adapt themselves to the circumstances. If they are exterminated by people, part of them dies, but the remaining ones produce posterity resistant to the applied poison. In case of tuberculosis, this is becomes apparent in occurrence of cultures resistant to this or that kind of drugs. Therefore, to treat for sure physicians use several drug substances at once – they fight, so to say, through extended front. On top of the fact that the patient gets high doses of ‘redundant’ drugs, which are far from innocuous for a patient, as a result of such mass attack there appear cultures with multiple drug resistance, and this is a real headache for those who is trying to cure the disease.


To recognize what particular culture caused a certain patient’s disease, to study properties of this culture and, finally, to choose the most efficient and safe drug will be possible with the help of the method being developed under the guidance of Academician Evgeni Sverdlov by specialists of the Shemyakin and Ovchinnikov Institute of Bio-organic Chemistry (Russian Academy of Sciences) and their colleagues from the State Research Center for Applied Microbiology (Obolensk). Being concerned by tuberculosis attack on Russia and worldwide, the International Science and Technology Center, Ministry of Industry, Science and Technology, Russian Academy of Sciences (in the framework of the “Physicochemical Biology” program) and the Foundation of the President of the Russian Federation sponsored the researchers’ effort.

“The subtraction hybridization method is rather difficult for explanation, says Nikolai Gvozdevsky, one of the participants to the project. In a general way, the concept is that DNA molecules of the known and investigated culture are ‘clipped’ into parts in a certain way at full length, these parts are marked on both sides and they are mixed in a certain ratio. Then each part is divided into two parallel nucleotide sequences (DNA, as we know from times of Watson and Crick, is a spiral consisting of two complementary, i.e. fitting to each other in a unique way, nucleotide chains), and then these two untwisted parts are allowed to join again. Thanks to some experimental techniques, the results allow to identify which DNA sections distinguish one culture from the other and to single out these sections. A vast electronic card file already available for DNA sequences of some widespread mycobacterial cultures, for its part, may help to determine which section of the genome was found as a result and which protein product this gene (DNA section) may code.

Then the researchers use the found genomic sequences (unique for certain mycobacteria) for testing a large population sampling of pathogens for presence of these particular sequences. Unknown clinical isolate of M. tuberculosis may contain or not contain such a genetic marker in its genome composition. To answer the question “yes or no” allows another method called the PCR - polymerase chain reaction, perhaps one of the most widespread experimental approaches now in molecular clinical diagnostics. As a result of such analysis a set of final “yes” and “no” is obtained relating to all genes found in the course of subtraction hybridization, it allows like a binary code to group mycobacterial isolates and to recognize what particular culture got into the researcher’s test-tube.”

In the course of their investigation the researchers not only studied about two hundred clinical isolates educed from samples of patients’ phlegm, but also discovered three genes in the genome of one of the cultures, which were not present in the genomes of other cultures. These genes are interesting by the fact that they are typical of the isolate which is the most virulent of all. The researchers assume that these gene specifically are responsible for unusually high malicious ‘sociability’ of this culture – its ability to interact with the host organism and correspondingly its special danger (virulence) to the host.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>