Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify molecular link between body fat and blood lipids

11.11.2005


Scientists from Wageningen University in the Netherlands have discovered that a factor released from body fat, which they call Fasting-Induced Adipose Factor or FIAF, has a major impact on blood levels of HDL and triglycerides in mice. The factor might be a promising drug candidate, team leader dr. Sander Kersten says. “Our study demonstrates that small changes in the production of FIAF in mice elevate blood HDL and triglycerides.”



Obesity is known to negatively influence the level of cholesterol and other fats in our blood, often causing a condition called dyslipidemia. For many years, researchers have suspected that factors secreted from body fat affect blood lipids, yet promising candidates are hard to find. Kersten explains: “We know that elevated blood levels of HDL are protective against cardiovascular disease, whereas elevated triglycerides are considered harmful. Obese people often have low HDL levels and elevated levels of triglycerides, and are therefore at increased risk for cardiovascular disease.”

“For years we have known that diet has an influence on blood lipids but improvements achieved by dietary changes alone are often unsatisfactory. While statins are very effective in reducing blood LDL levels, they hardly touch HDL and triglycerides. Therefore, there is a need for drugs that specifically address HDL and/or triglycerides. A promising drug candidate may be FIAF.” says Kersten.


The paper, which was published online on November 4 in the Journal of Biological Chemistry, shows that transgenic mice that produce more FIAF have elevated blood HDL and triglyceride levels. According to the paper, FIAF raises triglyceride levels by blocking the removal of triglycerides from blood.

What is remarkable is that FIAF binds to HDL and LDL particles. Many proteins are attached to lipoproteins circulating in blood but almost all of them are produced in liver. It is very unusual to find a protein produced in fat tissue being bound to lipoproteins.

According to Kersten, the binding to lipoproteins also shows a clear difference between mouse and human. “In mice FIAF appears to be bound to both LDL and HDL, but in humans it is only bound to HDL. It is not clear what the implications are of this variation but FIAF might very well act differently in humans than in mice.”

One possibility is that in humans FIAF mainly affects HDL levels and hardly influences triglycerides. Such an effect would be protective against cardiovascular disease.

Whether FIAF is effective towards HDL or triglycerides in humans will ultimately determine its potential as a drug target. “Right now, it is too early to tell. Hopefully, in the next few years we will get better insight into what FIAF actually does in humans”, says Kersten.

Jac Niessen | EurekAlert!
Further information:
http://www.wur.nl
http://www.wau.nl/pers/05/089wue.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>