Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell division: Decrypting the orientation of cell division axis

11.11.2005


At the Institut Curie, two CNRS teams have just reported crucial information on the orientation of cells as they divide. The cell division axis determines not only the position of the daughter cells but also their contents and hence their fate. The researchers have shown that the orientation of division depends on focal adhesions of the cell with its surroundings. They have also identified a new molecule that controls the localization of cellular determinants of so-called asymmetric cell division, thus giving rise to two different cells.

These two studies published in the October and November 2005 issues of Nature Cell Biology shed new light on one of the essential mechanisms in the life of a cell whose deregulation may give rise to cancer.

Division is an essential stage in the life of all cells: it participates in the body’s growth, wound repair, combating infection and in cell turnover. Within our bodies at any given moment some 250,000 million cells are dividing, that is 250,000 million mother cells are in the process of forming 500 000 million daughter cells. As individuals, however, we observe no change. This is because each newly formed cell has a well determined location. The mother cell has a given place among other cells in a tissue and, to avoid perturbing this organization, the daughter cells it produces are also appropriately placed. This very precise positioning is indispensable in maintaining the shape of our tissues and organs. The constraints imposed by the environment influence the division and position of the daughter cells.



Micropatterns control cell adhesion

Manuel Théry in the CNRS team of Michel Bornens(1) has developed an original approach to the study of the effect of space and spatial limitations on the division of adherent cells. By using a micropatterning technique, he imposes the same contour on cells while giving them different adhesion zones. Then, he observes by videomicroscopy how the cells divide. These restrictions reproduce the spatial information that a cell is likely “to sense” within a tissue.

In this way it has been demonstrated for the first time that adhesion proteins play a key part in the orientation of cell division.

Thus, the axis of cell division is oriented as a function of its points of adhesion to its surroundings: the cell can adopt the same shape in different micropatterns, but as this involves different focal adhesions, the orientation of the division is not the same. The focal adhesions govern the distribution of the actin cytoskeleton associated with the cell membrane and impose a specific spindle orientation: when the cell divides, it radically changes shape but keeps at its surface the memory of its focal adhesions. This memory enables orientation of the spindle axis.

This work shows that a protein(2), which is often perturbed in highly metastatic cancer cells, is involved in the orientation of cell division, and this could favor the dissemination of tumors.

This highly original approach therefore yields new findings on cell division and on the mechanisms that ensure it proceeds correctly. It also verifies whether the cells respond correctly to their environment at the time of division, and also helps to understand why the division of tumor cells is perturbed not only temporally but also spatially (orientation within tissue).

Understanding asymmetric division

The two cells formed by the division of a mother cell are not always identical. In the embryo, for instance, division gives rise to various cell types that form the different organs. Likewise, an adult stem cell gives rise to a specialized cell and to a new stem cell, thereby ensuring the conservation of this indispensable cellular type throughout life.

The CNRS team of Yohanns Bellaïche(3) at the Institut Curie are studying these asymmetric divisions in an attempt to understand how the mother cell produces two distinct cells. This sharing of the cell’s contents into two different portions is linked to the orientation of cell division, since the division axis determines how the mother cell splits.

Bellaïche and colleagues have shown that the protein Ric8 plays a key part in the positioning of the division spindle in Drosophila cells. Depending on this axis, the cellular components are separated into two distinct or identical parts.

Complementary views of cell division

Whereas the first study shows which factors determine the orientation of cell division, the second reveals the protein that switches these factors on. These two, fully complementary studies from the Institut Curie afford a new vision of cell division, and in particular of its orientation, a key point in development of the embryo and in correct tissue function in the adult.

These new fundamental data on cell division, whose disruption leads to cancer, are essential for a better understanding of how a cell becomes tumoral.

Catherine Goupillon | alfa
Further information:
http://www.nature.com/ncb/index.html
http://www.curie.fr

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>