Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes involved in biofilms

11.11.2005


The biologist Alejandro Toledo Arana has identified two new genes that operate as regulators in the formation process of the biofilm of Staphylococcus aureus, one of the bacteria most frequently involved in infections following medical implants, and has explained the functioning of a structural protein involved in this process. His research was the subject of a PhD thesis recently defended at the Institute of Agribiotechnology, a joint CSIC and Public University of Navarra centre, and is an advance in the race to identify action targets for the development of pharmaceutical drugs to combat these infections.



The PhD, entitled Identification and characterisation of new factors involved in the processes of formation of biofilm from Gram-positive bacteria.

Chronic infections


Biofilms are communities of microorganisms in a matrix that joins them together and to living or inert substrates, points out Alejandro Toledo. Although they are widely found in nature, and in many cases have beneficial effects, their study has been boosted on discovering their relation to chronic infections associated to medical implants such as those tissues involving infections of the middle ear, of the prostate gland, pneumonia in patients with cystic fibrosis, osteomyelitis, etc.

In the interior of the biofilm, bacteria present greater resistance to antibiotics, to the opsonisation by antibodies and to phagocytosis, which explains the chronic character of these infections, states the author of the PhD.

The aim of the PhD was the characterisation of the process of formation of the Staphylococcus aureus biofilm.

Regulating mechanisms unknown to date

The starting point for the research was the Bap protein (Biofilm associated protein). Bap, according to the thesis, presents a structural organisation similar to other surface proteins of unknown function in a number of species of bacteria such as: Esp de Enterococcus faecalis, mus20 of Pseudomonas putida, and sty2875 of Salmonella typhi.

Thus, taking into account the structural homology between Bap and Esp, it was decided to analyse for a possiblerelationship between the presence of the esp gene and the ability to produce biofilm by E. faecalis. The results showed that the presence of the esp gene was involved in the formation processes of these biofilms.

Two new genes

The results obtained to date intuitively suggest the existence of various mechanisms for forming biofilm as a function of the origin of the bacteria strains, as a consequence of which it was decided to widen the scope of the research, using a strain of Staphylococcus aureus from otitis media.

For the identification of the genes involved in the formation of the biofilm of this strain, two different strategies were followed. The first, following the usual methods, involved identifying mutants that had lost the capacity to form biofilm, thus enabling identification of the essential genes and positive regulators of the process. The results showed that a positive regulator known as Pnp (Polynucleotide phosphorylase) exists and which regulates the accumulation of the main exopolysaccharide involved in the formation of the biofilm for this bacteria.

Moreover, the second strategy arose during the development of a medium chemically defined in order to study how environmental signals affect the process of formation of the biofilm. Unexpectedly, most of the clinical strains of Staphylococcus aureus were unable to form biofilm in the synthetic medium, which suggested to us that the process was, perhaps, repressed in this medium.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>