Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feds give researchers ok for safety test of adult stem cells in patients with heart disease

10.11.2005


Researchers at Case Western Reserve University School of Medicine and University Hospitals of Cleveland announced that the Food and Drug Administration (FDA) has approved plans to begin a study to evaluate the safety of using adult stem cells from bone marrow to treat chronic ischemia, a serious form of heart disease.



The FDA has approved a Phase I study designed to test the safety of the procedure. It will involve injecting bone marrow stem cells at varying doses into the coronary arteries of patients suffering chronic ischemic coronary artery disease, a condition in which one or more of the primary arteries supplying blood flow to the heart are clogged. The study will include patients who are not candidates for angioplasty, stent placement or coronary artery bypass grafting (CABG).

Dale Adler, M.D., vice chair of medicine at Case and UHC, will lead this study. The Harvard Clinical Research Institute (HCRI) has been contracted to help run the trial and will establish an independent data and safety monitoring board to ensure patient safety and data integrity.


"This is a first step in a long process to determine if this method can someday be used to help patients with this heart condition," said Adler.

The trial is one of three ongoing studies in the United States to use bone marrow stem cells to treat chronic ischemia. The procedure will include harvesting stem cells from a patient’s bone marrow, capturing the stem cells, and then infusing the stem cells through a coronary artery so that new blood vessels will grow (neovasculogenesis). The hope is the new blood vessels will replace or supplement those blood vessels that fail to adequately supply oxygenated blood to heart tissue. The method was developed by Mary Laughlin, M.D., a hematologist, and Vincent Pompili, M.D., a cardiologist, both of Case, UHC and the National Center for Regenerative Medicine which has the mission of bringing stem cell research from the laboratory into development for the treatment of patients.

"Traditionally, physicians have been able to prevent heart attack or alleviate its after-effects, but they have not figured out how to initiate the sort of blood vessel repair that remains a key to survival," says Dr. Laughlin. "Now there is a promise of achieving that repair by infusing highly selected marrow stem cells."

Upon acceptance in the study, patients with blocked or damaged heart vessels will be assigned to one of three groups, each made up of three to four patients who will receive a preset dose of stem cell therapy. They will have stem cells drawn from their own bone marrow. These cells will then be enriched in the laboratory and injected into the patients at the site of their ischemia.

The Phase I study is being conducted at University Hospitals of Cleveland with support from the National Institutes of Health, Case Western Reserve University, and Cleveland-based Arteriocyte.

Blocked or damaged blood vessels are a major cause of illness and death around the world. Atherosclerosis, for example, can lead to congestive heart failure and heart attacks. About 5 million people in the United States have heart failure and the number is growing. Each year, another 550,000 people are diagnosed for the first time. It contributes to or causes about 300,000 deaths each year. About 1 percent of the U.S. population over the age of 65 is diagnosed with congestive heart failure each year. Existing therapies include drugs, gene therapy, and vascular interventions for relief of arterial obstructions.

In 2003, approximately 750,000 coronary artery bypass graft (CABG) surgeries were performed worldwide and approximately 1.8 million balloon angioplasty procedures were performed. While these interventional therapies are now the standard of care, there are still a significant number of people for whom these methods do not work, or who have blockage throughout their bodies.

George Stamatis | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>