Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feds give researchers ok for safety test of adult stem cells in patients with heart disease

10.11.2005


Researchers at Case Western Reserve University School of Medicine and University Hospitals of Cleveland announced that the Food and Drug Administration (FDA) has approved plans to begin a study to evaluate the safety of using adult stem cells from bone marrow to treat chronic ischemia, a serious form of heart disease.



The FDA has approved a Phase I study designed to test the safety of the procedure. It will involve injecting bone marrow stem cells at varying doses into the coronary arteries of patients suffering chronic ischemic coronary artery disease, a condition in which one or more of the primary arteries supplying blood flow to the heart are clogged. The study will include patients who are not candidates for angioplasty, stent placement or coronary artery bypass grafting (CABG).

Dale Adler, M.D., vice chair of medicine at Case and UHC, will lead this study. The Harvard Clinical Research Institute (HCRI) has been contracted to help run the trial and will establish an independent data and safety monitoring board to ensure patient safety and data integrity.


"This is a first step in a long process to determine if this method can someday be used to help patients with this heart condition," said Adler.

The trial is one of three ongoing studies in the United States to use bone marrow stem cells to treat chronic ischemia. The procedure will include harvesting stem cells from a patient’s bone marrow, capturing the stem cells, and then infusing the stem cells through a coronary artery so that new blood vessels will grow (neovasculogenesis). The hope is the new blood vessels will replace or supplement those blood vessels that fail to adequately supply oxygenated blood to heart tissue. The method was developed by Mary Laughlin, M.D., a hematologist, and Vincent Pompili, M.D., a cardiologist, both of Case, UHC and the National Center for Regenerative Medicine which has the mission of bringing stem cell research from the laboratory into development for the treatment of patients.

"Traditionally, physicians have been able to prevent heart attack or alleviate its after-effects, but they have not figured out how to initiate the sort of blood vessel repair that remains a key to survival," says Dr. Laughlin. "Now there is a promise of achieving that repair by infusing highly selected marrow stem cells."

Upon acceptance in the study, patients with blocked or damaged heart vessels will be assigned to one of three groups, each made up of three to four patients who will receive a preset dose of stem cell therapy. They will have stem cells drawn from their own bone marrow. These cells will then be enriched in the laboratory and injected into the patients at the site of their ischemia.

The Phase I study is being conducted at University Hospitals of Cleveland with support from the National Institutes of Health, Case Western Reserve University, and Cleveland-based Arteriocyte.

Blocked or damaged blood vessels are a major cause of illness and death around the world. Atherosclerosis, for example, can lead to congestive heart failure and heart attacks. About 5 million people in the United States have heart failure and the number is growing. Each year, another 550,000 people are diagnosed for the first time. It contributes to or causes about 300,000 deaths each year. About 1 percent of the U.S. population over the age of 65 is diagnosed with congestive heart failure each year. Existing therapies include drugs, gene therapy, and vascular interventions for relief of arterial obstructions.

In 2003, approximately 750,000 coronary artery bypass graft (CABG) surgeries were performed worldwide and approximately 1.8 million balloon angioplasty procedures were performed. While these interventional therapies are now the standard of care, there are still a significant number of people for whom these methods do not work, or who have blockage throughout their bodies.

George Stamatis | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>