Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feds give researchers ok for safety test of adult stem cells in patients with heart disease

10.11.2005


Researchers at Case Western Reserve University School of Medicine and University Hospitals of Cleveland announced that the Food and Drug Administration (FDA) has approved plans to begin a study to evaluate the safety of using adult stem cells from bone marrow to treat chronic ischemia, a serious form of heart disease.



The FDA has approved a Phase I study designed to test the safety of the procedure. It will involve injecting bone marrow stem cells at varying doses into the coronary arteries of patients suffering chronic ischemic coronary artery disease, a condition in which one or more of the primary arteries supplying blood flow to the heart are clogged. The study will include patients who are not candidates for angioplasty, stent placement or coronary artery bypass grafting (CABG).

Dale Adler, M.D., vice chair of medicine at Case and UHC, will lead this study. The Harvard Clinical Research Institute (HCRI) has been contracted to help run the trial and will establish an independent data and safety monitoring board to ensure patient safety and data integrity.


"This is a first step in a long process to determine if this method can someday be used to help patients with this heart condition," said Adler.

The trial is one of three ongoing studies in the United States to use bone marrow stem cells to treat chronic ischemia. The procedure will include harvesting stem cells from a patient’s bone marrow, capturing the stem cells, and then infusing the stem cells through a coronary artery so that new blood vessels will grow (neovasculogenesis). The hope is the new blood vessels will replace or supplement those blood vessels that fail to adequately supply oxygenated blood to heart tissue. The method was developed by Mary Laughlin, M.D., a hematologist, and Vincent Pompili, M.D., a cardiologist, both of Case, UHC and the National Center for Regenerative Medicine which has the mission of bringing stem cell research from the laboratory into development for the treatment of patients.

"Traditionally, physicians have been able to prevent heart attack or alleviate its after-effects, but they have not figured out how to initiate the sort of blood vessel repair that remains a key to survival," says Dr. Laughlin. "Now there is a promise of achieving that repair by infusing highly selected marrow stem cells."

Upon acceptance in the study, patients with blocked or damaged heart vessels will be assigned to one of three groups, each made up of three to four patients who will receive a preset dose of stem cell therapy. They will have stem cells drawn from their own bone marrow. These cells will then be enriched in the laboratory and injected into the patients at the site of their ischemia.

The Phase I study is being conducted at University Hospitals of Cleveland with support from the National Institutes of Health, Case Western Reserve University, and Cleveland-based Arteriocyte.

Blocked or damaged blood vessels are a major cause of illness and death around the world. Atherosclerosis, for example, can lead to congestive heart failure and heart attacks. About 5 million people in the United States have heart failure and the number is growing. Each year, another 550,000 people are diagnosed for the first time. It contributes to or causes about 300,000 deaths each year. About 1 percent of the U.S. population over the age of 65 is diagnosed with congestive heart failure each year. Existing therapies include drugs, gene therapy, and vascular interventions for relief of arterial obstructions.

In 2003, approximately 750,000 coronary artery bypass graft (CABG) surgeries were performed worldwide and approximately 1.8 million balloon angioplasty procedures were performed. While these interventional therapies are now the standard of care, there are still a significant number of people for whom these methods do not work, or who have blockage throughout their bodies.

George Stamatis | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

nachricht Beer can lift your spirits
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>