Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A resetting signal keeps circadian rhythm on track in Drosophila fruit flies

10.11.2005


Two key groups of neurons control morning and evening activity



A Brandeis University study published this week in Nature shows for the first time that a molecular signal maintains coherence among brain clock cells that regulate daily activity of Drosophila melanogaster (fruit flies). The two key groups of neurons control morning and evening activity and are maintained in synch even when the flies are plunged into darkness for extended periods of time.

This daily resetting signal flows from the morning to the evening cells and maintains a 12-hour difference between the timing of morning and evening activity, without the need for any environmental cues. The Brandeis researchers came to this conclusion by speeding up only the morning cell clock or only the evening cell clock. The results showed clearly that these two clocks always remained coupled in a network that was governed by the morning cell signal.


"We think it very likely that something similar is occurring in the brain of mammals, including humans, because their clock neurons also maintain remarkable coherence," said Professor Michael Rosbash, director of the National Center for Behavioral Genomics at Brandeis, and a Howard Hughes Medical Institute investigator. "However, circadian brain anatomy in mammals is much more complicated and the tools much too primitive to allow a similar network approach at this time. Flies are state-of-the art. Fortunately, their circadian clocks and even neural mechanisms are quite conserved with mammals."

"We were curious about how these brain cells stay synchronized, so we controlled the way time was ticking in individual clocks: we made the morning cells run faster and the evening cells relatively slower, and the other way around," explained researcher Dan Stoleru. "In this fashion, we introduced phase differences between them. It turned out that no matter the manipulation, the morning cells set the pace of the entire system, so that the rhythm always stayed on track."

The study showed that the morning clock resets the evening clock every day, without changing the intrinsic speed of the evening clock. Between daily resets, therefore, the evening cells time evening activity with their own clock, but they will always start counting time from the moment they were reset by the morning cells. In other words, the evening clock triggers the alarm at its own pace, but it is the morning clock which sets the alarm every day.

"So if you are looking over several days, only one period will be observed – the one dictated by the morning clock," Stoleru said.

Research by the same Brandeis team, published last year in Nature, had shown that two distinct groups of clock neurons determine morning and evening activity. The present study greatly advanced the understanding of how temporal coherence between these two cell groups, and between their behavioral outputs, is achieved.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>