Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A resetting signal keeps circadian rhythm on track in Drosophila fruit flies

10.11.2005


Two key groups of neurons control morning and evening activity



A Brandeis University study published this week in Nature shows for the first time that a molecular signal maintains coherence among brain clock cells that regulate daily activity of Drosophila melanogaster (fruit flies). The two key groups of neurons control morning and evening activity and are maintained in synch even when the flies are plunged into darkness for extended periods of time.

This daily resetting signal flows from the morning to the evening cells and maintains a 12-hour difference between the timing of morning and evening activity, without the need for any environmental cues. The Brandeis researchers came to this conclusion by speeding up only the morning cell clock or only the evening cell clock. The results showed clearly that these two clocks always remained coupled in a network that was governed by the morning cell signal.


"We think it very likely that something similar is occurring in the brain of mammals, including humans, because their clock neurons also maintain remarkable coherence," said Professor Michael Rosbash, director of the National Center for Behavioral Genomics at Brandeis, and a Howard Hughes Medical Institute investigator. "However, circadian brain anatomy in mammals is much more complicated and the tools much too primitive to allow a similar network approach at this time. Flies are state-of-the art. Fortunately, their circadian clocks and even neural mechanisms are quite conserved with mammals."

"We were curious about how these brain cells stay synchronized, so we controlled the way time was ticking in individual clocks: we made the morning cells run faster and the evening cells relatively slower, and the other way around," explained researcher Dan Stoleru. "In this fashion, we introduced phase differences between them. It turned out that no matter the manipulation, the morning cells set the pace of the entire system, so that the rhythm always stayed on track."

The study showed that the morning clock resets the evening clock every day, without changing the intrinsic speed of the evening clock. Between daily resets, therefore, the evening cells time evening activity with their own clock, but they will always start counting time from the moment they were reset by the morning cells. In other words, the evening clock triggers the alarm at its own pace, but it is the morning clock which sets the alarm every day.

"So if you are looking over several days, only one period will be observed – the one dictated by the morning clock," Stoleru said.

Research by the same Brandeis team, published last year in Nature, had shown that two distinct groups of clock neurons determine morning and evening activity. The present study greatly advanced the understanding of how temporal coherence between these two cell groups, and between their behavioral outputs, is achieved.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>