Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein discovery may have implications for treating deadly E. coli infection

09.11.2005


Queen’s researchers may have opened the door to more effective treatment of a deadly strain of the E. coli bacteria with the discovery of a previously unknown protein.



A team led by biochemistry researcher Zongchao Jia and graduate student Michael Suits has identified a protein that allows the bacterial strain known as E. coli 0157:H7 to obtain the iron it needs for survival in the body.

Iron is a catalyst for bacterial growth, so when a human body detects bacterial invasion, it naturally produces proteins that bind tightly to and restrict iron to limit bacterial growth. In response, bacteria have evolved other methods to acquire iron including detecting and using human heme within proteins such as hemoglobin that transports oxygen from our lungs.


The newly discovered protein breaks down heme, releasing the iron atom stored there for use by the deadly bacteria.

“This discovery opens the door for studying the function of heme iron in this strain of E. coli, and may lead to an understanding of how to therapeutically isolate the protein to keep the bacteria from thriving,” says Dr. Jia.

E. coli 0157:H7 is responsible for the fatal illnesses in the Walkerton tragedy, the illness known as “Hamburger Disease” and the recent evacuation of over a thousand residents from the Kasechewan First Nation reserve. It is most commonly transmitted through undercooked meat, unpasturized milk and infected water sources.

Researchers believe that isolating one of the proteins E. coli 0157:H7 needs for survival will not be enough, however, since the bacteria will migrate to surrounding proteins as iron sources.

Ongoing research is required to examine the functions of several different proteins to find an effective treatment for E. coli 0157:H7, similar to the cocktail used to treat other severe bacterial infections.

The results of the Queen’s study, funded by the Canadian Institutes for Health Research (CIHR) are available at PNAS online today.

Contacts:

Lorinda Peterson, 613.533.3234, lorinda.peterson@queensu.ca or Therese Greenwood, 613.533.6907, therese.greenwood@queensu.ca, Queen’s News and Media Services

Lorinda Peterson | EurekAlert!
Further information:
http://Lorinda Peterson

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>