Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New protein discovery may have implications for treating deadly E. coli infection


Queen’s researchers may have opened the door to more effective treatment of a deadly strain of the E. coli bacteria with the discovery of a previously unknown protein.

A team led by biochemistry researcher Zongchao Jia and graduate student Michael Suits has identified a protein that allows the bacterial strain known as E. coli 0157:H7 to obtain the iron it needs for survival in the body.

Iron is a catalyst for bacterial growth, so when a human body detects bacterial invasion, it naturally produces proteins that bind tightly to and restrict iron to limit bacterial growth. In response, bacteria have evolved other methods to acquire iron including detecting and using human heme within proteins such as hemoglobin that transports oxygen from our lungs.

The newly discovered protein breaks down heme, releasing the iron atom stored there for use by the deadly bacteria.

“This discovery opens the door for studying the function of heme iron in this strain of E. coli, and may lead to an understanding of how to therapeutically isolate the protein to keep the bacteria from thriving,” says Dr. Jia.

E. coli 0157:H7 is responsible for the fatal illnesses in the Walkerton tragedy, the illness known as “Hamburger Disease” and the recent evacuation of over a thousand residents from the Kasechewan First Nation reserve. It is most commonly transmitted through undercooked meat, unpasturized milk and infected water sources.

Researchers believe that isolating one of the proteins E. coli 0157:H7 needs for survival will not be enough, however, since the bacteria will migrate to surrounding proteins as iron sources.

Ongoing research is required to examine the functions of several different proteins to find an effective treatment for E. coli 0157:H7, similar to the cocktail used to treat other severe bacterial infections.

The results of the Queen’s study, funded by the Canadian Institutes for Health Research (CIHR) are available at PNAS online today.


Lorinda Peterson, 613.533.3234, or Therese Greenwood, 613.533.6907,, Queen’s News and Media Services

Lorinda Peterson | EurekAlert!
Further information:
http://Lorinda Peterson

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>