Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new form of cancer gene regulation

09.11.2005


The Quaking gene, first described as a mutation in mice that causes rapid tremor, is thought to suppress tumor formation and protect humans from cancer.



Now, a team of researchers from Northwestern University and the University of Wisconsin has shown that the Quaking gene likely suppresses tumor growth by inhibiting production of a protein associated with GLI1, a cancer-causing oncogene highly associated with severe birth defects and several childhood cancers.

The group’s study, published in the Nov. 1 online issue of Developmental Biology, details the discovery of an important and completely novel form of regulation of the GLI1 gene.


"Results of the study open a new research direction for issues ranging from cancer formation to environmental interactions in development and will point the way to similar mechanisms of control in other genes," said Philip M. Iannaccone, M.D., who led the study.

Iannaccone is George M. Eisenberg Professor of Pediatrics at Northwestern University Feinberg School of Medicine and deputy director for basic research at Children’s Memorial Research Center.

Development occurs as a coordinated series of genetic control events that create proliferation of cells, signals for further differentiation, proteins that define cellular function and "programmed" movement of cells into developing structures.

These processes, known as pattern formation, are controlled largely by networks of genes and proteins called signal transduction pathways that receive signals from outside of the cell in the form of protein interaction with the cell surface. Through a series of intracellular events, these signals trigger gene activation or repression through action of transcription factors in the nucleus of the cell.

The altered gene expression profile then results in cellular differentiation, cellular proliferation or cellular death as pattern formation proceeds.

An important signal transduction pathway critical to early development of humans and animals involves the genes Sonic hedgehog (the signal) and GLI (the transcription factor).

The GLI family of three genes was first discovered in a human brain tumor, and mutations in this family of genes result in severe birth defects and devastating cancers in humans.

"While some cancers are explained by known defects in the regulation of the GLI1 gene, for many cancers the reasons for excessive GLI1 protein are not known. The protein levels and activity of GLI1 are likely regulated at levels other than the gene," Iannaccone said.

The form of regulation the researchers discovered occurs after the gene makes messenger RNA, the first step toward making a protein that controls cell fate. Once the messenger RNA leaves the cell, it participates in a process called translation, during which the cellular machinery makes a protein by linking amino acids together according to the plan described in the messenger RNA and thereby based on the information from the DNA sequence of the gene.

Iannaccone and colleagues showed that after the messenger RNA for GLI1 is made, it binds to the Quaking protein and inhibits the translation event. This means that all of the controls that the cell has on the gene for GLI1 can be present and active and the GLI1 is still not produced.

Significantly, the study demonstrated that this regulation is conserved from human to the worm, Caenorhabditis elegans (often used in laboratory research), indicating that the formation of these RNA protein complexes is a very ancient form of regulation of protein function.

Olga Lakiza, postdoctoral fellow in pediatrics at the Feinberg School, was the first author on the article. Iannaccone’s other co-researchers on this study included David O. Walterhouse, associate professor of pediatrics, Feinberg School and Children’s Memorial Research Center, and Elizabeth B. Goodwin, department of genetics, University of Wisconsin, Madison.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>