Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover new form of cancer gene regulation


The Quaking gene, first described as a mutation in mice that causes rapid tremor, is thought to suppress tumor formation and protect humans from cancer.

Now, a team of researchers from Northwestern University and the University of Wisconsin has shown that the Quaking gene likely suppresses tumor growth by inhibiting production of a protein associated with GLI1, a cancer-causing oncogene highly associated with severe birth defects and several childhood cancers.

The group’s study, published in the Nov. 1 online issue of Developmental Biology, details the discovery of an important and completely novel form of regulation of the GLI1 gene.

"Results of the study open a new research direction for issues ranging from cancer formation to environmental interactions in development and will point the way to similar mechanisms of control in other genes," said Philip M. Iannaccone, M.D., who led the study.

Iannaccone is George M. Eisenberg Professor of Pediatrics at Northwestern University Feinberg School of Medicine and deputy director for basic research at Children’s Memorial Research Center.

Development occurs as a coordinated series of genetic control events that create proliferation of cells, signals for further differentiation, proteins that define cellular function and "programmed" movement of cells into developing structures.

These processes, known as pattern formation, are controlled largely by networks of genes and proteins called signal transduction pathways that receive signals from outside of the cell in the form of protein interaction with the cell surface. Through a series of intracellular events, these signals trigger gene activation or repression through action of transcription factors in the nucleus of the cell.

The altered gene expression profile then results in cellular differentiation, cellular proliferation or cellular death as pattern formation proceeds.

An important signal transduction pathway critical to early development of humans and animals involves the genes Sonic hedgehog (the signal) and GLI (the transcription factor).

The GLI family of three genes was first discovered in a human brain tumor, and mutations in this family of genes result in severe birth defects and devastating cancers in humans.

"While some cancers are explained by known defects in the regulation of the GLI1 gene, for many cancers the reasons for excessive GLI1 protein are not known. The protein levels and activity of GLI1 are likely regulated at levels other than the gene," Iannaccone said.

The form of regulation the researchers discovered occurs after the gene makes messenger RNA, the first step toward making a protein that controls cell fate. Once the messenger RNA leaves the cell, it participates in a process called translation, during which the cellular machinery makes a protein by linking amino acids together according to the plan described in the messenger RNA and thereby based on the information from the DNA sequence of the gene.

Iannaccone and colleagues showed that after the messenger RNA for GLI1 is made, it binds to the Quaking protein and inhibits the translation event. This means that all of the controls that the cell has on the gene for GLI1 can be present and active and the GLI1 is still not produced.

Significantly, the study demonstrated that this regulation is conserved from human to the worm, Caenorhabditis elegans (often used in laboratory research), indicating that the formation of these RNA protein complexes is a very ancient form of regulation of protein function.

Olga Lakiza, postdoctoral fellow in pediatrics at the Feinberg School, was the first author on the article. Iannaccone’s other co-researchers on this study included David O. Walterhouse, associate professor of pediatrics, Feinberg School and Children’s Memorial Research Center, and Elizabeth B. Goodwin, department of genetics, University of Wisconsin, Madison.

Elizabeth Crown | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>