Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resetting epigenetic code could aid lupus patients

08.11.2005


Researchers at Wake Forest University School of Medicine and the University of Virginia hope to reset part of the "epigenetic code" in lupus patients and thus improve treatment.



The epigenetic research focuses on histones, the tiny spools in the nuclei of cells around which DNA winds and compacts when it is not in the process of copying in cell division. Epigenetic changes in the histones are those that can alter gene expression – and associated proteins – without altering the underlying DNA sequence, said Nilamadhab Mishra, M.D., a rheumatologist at Wake Forest University Baptist Medical Center.

"The histone code is one of the master regulators in gene expression," he said.


In the Journal of Proteome Research of the American Chemical Society, Mishra and colleagues said their study was the first to establish the association between aberrant histone codes and the mechanisms underlying lupus (systemic lupus erythematosus), which is an autoimmune disorder. The online version appeared this weekend. The researchers identified three new histone modifications in mice with a lupus-like condition that were not found previously. The team found that by using compounds called HDAC (histone deacetylase) inhibitors, they could reverse the modifications and reset the histone code.

In the mice with lupus, Mishra has been testing several HDAC inhibitors, one called trichostatin A (TSA) and another called SAHA, both of which successfully treat lupus symptoms. The new research may help explain the reasons why the treatments work.

Without treatment, he said, these mice have an accelerated autoimmune disorder that produces a host of symptoms from arthritis and enlarged spleens to failing kidneys. Half are dead in 24 weeks, primarily of kidney failure. Control mice of the same type, but without lupus, live much longer; the females dying at 73 weeks and the males at 93 weeks.

In essence, Mishra said, the HDAC inhibitors reset the histone modifications, reducing or eliminating the lupus condition. "If we modify the histone with a drug, we can also cure the lupus."

The work is part of the effort to unravel a number of the mysteries of lupus: Why does it occur in one identical twin and usually not the other, though they have exactly the same DNA? Why does lupus strike predominantly women? Why does it abruptly strike some while they are still young, others in middle age and others not until old age?

Mishra said the proteins expressed through the histones vary between healthy individuals and lupus patients. There also is variation among lupus patients. These differences may explain why some lupus patients develop kidney disease and others do not, or other symptoms like arthritis or skin disorders.

Prior to this research, the prevailing theory is that the variations were due to differences in genetic background and the influences of the environment. Mishra’s mouse models are all genetically identical, yet variations exist. "They are the same, but different," he said. Histone changes could explain these differences. Mishra said that in addition to the use of HDAC inhibitors, combination treatment for lupus might also include a methylase inhibitor. But those don’t exist yet.

Lupus is a chronic inflammatory autoimmune disorder that affects the skin, kidneys, joints, lungs, blood and central nervous system. Systemic lupus affects more than 1 million Americans, mostly women.

Mishra’s coauthors are Benjamin A. Garcia, Ph.D., Scott A. Busby, Ph.D., Jeffrey Shabanowitz, Ph.D., and Donald F. Hunt, Ph.D., of the University of Virginia, Charlottesville.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>