Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inherent vascular repair key to atherosclerosis

08.11.2005


The progression of the artery-clogging disease atherosclerosis is linked to the inability of specialized bone marrow cells to continuously repair damage to the arterial lining, Duke University Medical Center researchers have demonstrated.

The researchers also identified characteristic clusters of genes expressed at distinct phases of disease progression. The Duke cardiologists and geneticists believe that the findings of their latest experiments represent a new paradigm for understanding and potentially treating atherosclerosis. They said their finding represents the first time the progression of any chronic disease has been linked to a deficiency in the body’s repair machinery.

Atherosclerosis is marked by the thickening and clogging of blood vessels, which over time can deprive the heart of necessary oxygen and nutrients. While risk factors such as poor diet, smoking, high cholesterol levels and inactivity are important in developing atherosclerosis, the researchers now believe that heredity plays a crucial role in how the body responds to these environmental factors. "These results provide us with an intriguing new understanding of the disease process involved in atherosclerosis," said Duke cardiologist Pascal Goldschmidt, M.D., senior member of the research team and chairman of Duke’s Department of Medicine. The results of the Duke studies were published early on-line and will appear in the Nov. 15, 2005, issue of the Proceedings of the National Academy of Sciences. The study was supported by the National Institutes of Health.



"It appears that the disease progresses as the body’s intrinsic ability to repair and rejuvenate itself somehow becomes deficient," Goldschmidt continued. "It is exciting for us think that if we as physicians could somehow stimulate or maintain a successful repair process in heart patients, we might be able to prevent the development of atherosclerosis even if we can’t completely control other risk factors, such as high lipid levels or hypertension."

The disease process usually begins with an immune system response to an insult or injury to the arterial lining, said Goldschmidt. Once there, these cells recruit lipids and other fatty materials to the damage site, essentially creating a scar. Over time, the affected arterial cells themselves change, creating a narrower and less elastic artery.

The Duke team focused on the role of a specialized bone marrow cells known as vascular progenitor cells (VPC). These cells circulate throughout the blood stream, respond to the initial damage to the arterial lining and initiate the repair process.

"In our latest experiments, we have demonstrated the natural molecular history of atherosclerosis based on the expression of distinct gene clusters and how changes in VPCs are associated with the progression of disease," said Duke cardiologist David Seo, M.D., senior author of the paper. "This is the first time the progression of a chronic disease has been linked to changes in the body’s ability to repair itself."

For their experiments, the researchers used a well-studied strain of mice whose responses to arterial damage closely parallel that of humans. They fed the mice high-fat diets at different ages. Based on the level of disease found in the aortas of mice, they classified the mice as having no disease, early disease, intermediate disease and moderate disease.

The researchers then performed a DNA microarray, or gene chip, analysis of the activity of genes in aorta samples from each of the four groups. Using this novel technique, researchers can quickly screen more than 12,500 known genes, searching for those that are "turned on," or expressing themselves.

"We found distinct gene clusters, or what we call metagenes, that were activated in each group," said Ravi Karra, M.D., first author of paper and member of the Duke team as a medical student. He is now conducting residency training at Brigham & Women’s Hospital, Boston. "We know that there won’t be one ’big bang’ gene involved in a process such as atherosclerosis. These metagenes are like fingerprints, which are specific and unique."

Specifically, the researchers found characteristic activity in 197 genes associated with the transition from no disease to early disease; 146 genes associated with transition from early to intermediate disease; 110 genes associated with the transition from intermediate to moderate disease; and 650 genes associated with the transition from no disease to moderate disease.

Interestingly, they said, the bulk of the genes expressed in the initiation of disease were found to play a role in lipid and lipoprotein metabolism. These genes are known to influence the metabolism of the arterial wall by controlling the passage of cholesterol. Genes over-expressed in the transition from early to intermediate disease group tended to fall in the area of the immune response and inflammation. For the transition from intermediate to moderate, genes that actually control the remodeling of arterial wall were over-expressed.

With the knowledge of which genes were over-expressed at each stage of disease, the researchers then compared the findings in mice to that of humans and found the results to be strikingly similar.

"The genes we have identified may represent important modifiers of susceptibility and resistance to atherosclerosis," Goldschmidt said. "These findings could have clinical implications in that the identified genes may represent new targets for intervention. Additionally, the distinct patterns of gene expression may help us determine how advanced the disease may be in patients."

In past experiments, the Duke researchers demonstrated that injecting VPCs http://www.dukemednews.org/news/article.php?id=6765&index=2) into mice with damaged arteries could repair that damage. Furthermore, they discovered that older VPCs had a less robust repair capacity than younger VPCs.

Armed with this new chronology of genetic expression, or time-line, of the key events in the natural progression of atherosclerosis, the researchers then examined how this information correlated with the age and capability of VPCs.

"Significantly, we discovered that the point in time in the disease where the expression patterns in the aorta begins to change from young VPC to old VPC treatment coincides with the point at which the inflammatory response becomes most noticeable and lesions on the artery start becoming visible," Goldschmidt explained.

"What surprised us the most was to find out that what seemed from the outside to be a very complex disease may not be that complicated after all," Goldschmidt continued. "It turns out to be a series of events that make a lot of sense. The key is the body’s reaction to tissue injury, which appears to be governed by certain sets of genes."

He said that most people can cite an example of someone in their 80s or 90s who smoke or eat unhealthy diets but who are remarkably free of cardiovascular disease.

"Their genetic make-up must give them an amazing capacity for repair," he said. "But it works the other way as well. Take for example the Olympic skater Sergei Grinkov. He was an incredible athlete with none of the known cardiovascular risk factors, yet he died of a massive heart attack at the age of 28. He probably had a dreadful inherent capacity for repair."

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>