Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major EU grant to develop cancer-fighting cells

08.11.2005


A pre-clinical research project coordinated by The University of Manchester, which will advance understanding of how cancer cells evade the immune system, has been awarded nearly €12m by the EU. The European Union Framework Programme (FP6) will enable doctors to improve ‘T-cell mediated immunotherapy’, which has the potential to fight a broad range of cancers.



The five year ‘ATTACK’ Project (Adoptive engineered T-cell Targeting to Activate Cancer Killing), involves an international consortium of 16 partners, who will collaborate on the process of engineering T-cells.

T-cells are part of the body’s immune defense machinery which naturally protects against infections and some cancers and can be used to treat some malignant disease, but many cancers avoid destruction by the immune system. The project team hopes that state of the art technologies can be used to modify the T-cells, to hunt down and destroy cancer tumours.


Robert Hawkins, Cancer Research UK Professor of Medical Oncology at The University of Manchester, said: “Unlike radiotherapy and chemotherapy, which destroy both cancerous and healthy cells, Engineered T-cell Therapy has the potential to selectively destroy cancers within a patient’s body using its own infection-fighting mechanisms. This project focuses on optimising that system in the laboratory.

“The ultimate aim is to develop a process whereby T-cells are taken from the blood of a patient, genetically modified to enable them to target tumours, multiplied in the laboratory and injected in large numbers back into the patient.

The approach stems from original research by Professor Zelig Eshhar in Israel, and the partners include experts in immunology and tumour biology as well as those who have developed key aspects of engineered T-cells. Professor Hawkins continued:

“Already vaccines can prevent certain cancers, and the aim of this project is to develop effective methods to target others. By bringing together many of the leading immunotherapy groups in Europe we will be able to combine basic scientific expertise, new technologies and experience in pre-clinical testing, and our co-ordinated efforts should facilitate enormous progress.

“We expect the project to lead to many more trials in the future and are hopeful it could lead to real improvements in treatment.”

Professor Nic Jones, head of the Paterson Institute for Cancer Research where the project will be based, said: “Developments in cancer treatment are likely to require major team efforts, and we are delighted that the consortium has been awarded this major international grant. Cancer immunotherapy is a very exciting area and one that we are seeking to expand further in Manchester; we are already building a new Gene Therapy Centre funded by the Christie Appeal and are hoping to recruit other leading researchers in this field.”

Caroline Shaw, Chief Executive of the Christie Hospital said; “This is fantastic news for Professor Hawkins and his research team, for Manchester and most importantly for patients. Cancer research in Manchester is going from strength to strength and it’s the patients who will ultimately benefit.”

Jo Nightingale | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/pressreleases/majoreugranttodevelopcancer-fightingcells7november2005/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>