Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major EU grant to develop cancer-fighting cells

08.11.2005


A pre-clinical research project coordinated by The University of Manchester, which will advance understanding of how cancer cells evade the immune system, has been awarded nearly €12m by the EU. The European Union Framework Programme (FP6) will enable doctors to improve ‘T-cell mediated immunotherapy’, which has the potential to fight a broad range of cancers.



The five year ‘ATTACK’ Project (Adoptive engineered T-cell Targeting to Activate Cancer Killing), involves an international consortium of 16 partners, who will collaborate on the process of engineering T-cells.

T-cells are part of the body’s immune defense machinery which naturally protects against infections and some cancers and can be used to treat some malignant disease, but many cancers avoid destruction by the immune system. The project team hopes that state of the art technologies can be used to modify the T-cells, to hunt down and destroy cancer tumours.


Robert Hawkins, Cancer Research UK Professor of Medical Oncology at The University of Manchester, said: “Unlike radiotherapy and chemotherapy, which destroy both cancerous and healthy cells, Engineered T-cell Therapy has the potential to selectively destroy cancers within a patient’s body using its own infection-fighting mechanisms. This project focuses on optimising that system in the laboratory.

“The ultimate aim is to develop a process whereby T-cells are taken from the blood of a patient, genetically modified to enable them to target tumours, multiplied in the laboratory and injected in large numbers back into the patient.

The approach stems from original research by Professor Zelig Eshhar in Israel, and the partners include experts in immunology and tumour biology as well as those who have developed key aspects of engineered T-cells. Professor Hawkins continued:

“Already vaccines can prevent certain cancers, and the aim of this project is to develop effective methods to target others. By bringing together many of the leading immunotherapy groups in Europe we will be able to combine basic scientific expertise, new technologies and experience in pre-clinical testing, and our co-ordinated efforts should facilitate enormous progress.

“We expect the project to lead to many more trials in the future and are hopeful it could lead to real improvements in treatment.”

Professor Nic Jones, head of the Paterson Institute for Cancer Research where the project will be based, said: “Developments in cancer treatment are likely to require major team efforts, and we are delighted that the consortium has been awarded this major international grant. Cancer immunotherapy is a very exciting area and one that we are seeking to expand further in Manchester; we are already building a new Gene Therapy Centre funded by the Christie Appeal and are hoping to recruit other leading researchers in this field.”

Caroline Shaw, Chief Executive of the Christie Hospital said; “This is fantastic news for Professor Hawkins and his research team, for Manchester and most importantly for patients. Cancer research in Manchester is going from strength to strength and it’s the patients who will ultimately benefit.”

Jo Nightingale | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/pressreleases/majoreugranttodevelopcancer-fightingcells7november2005/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>