Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resetting epigenetic code could aid lupus patients

07.11.2005


Researchers at Wake Forest University School of Medicine and the University of Virginia hope to reset part of the "epigenetic code" in lupus patients and thus improve treatment.



The epigenetic research focuses on histones, the tiny spools in the nuclei of cells around which DNA winds and compacts when it is not in the process of copying in cell division. Epigenetic changes in the histones are those that can alter gene expression – and associated proteins – without altering the underlying DNA sequence, said Nilamadhab Mishra, M.D., a rheumatologist at Wake Forest University Baptist Medical Center.

"The histone code is one of the master regulators in gene expression," he said.


In the Journal of Proteome Research of the American Chemical Society, Mishra and colleagues said their study was the first to establish the association between aberrant histone codes and the mechanisms underlying lupus (systemic lupus erythematosus), which is an autoimmune disorder. The online version appeared this weekend. The researchers identified three new histone modifications in mice with a lupus-like condition that were not found previously. The team found that by using compounds called HDAC (histone deacetylase) inhibitors, they could reverse the modifications and reset the histone code.

In the mice with lupus, Mishra has been testing several HDAC inhibitors, one called trichostatin A (TSA) and another called SAHA, both of which successfully treat lupus symptoms. The new research may help explain the reasons why the treatments work.

Without treatment, he said, these mice have an accelerated autoimmune disorder that produces a host of symptoms from arthritis and enlarged spleens to failing kidneys. Half are dead in 24 weeks, primarily of kidney failure. Control mice of the same type, but without lupus, live much longer; the females dying at 73 weeks and the males at 93 weeks.

In essence, Mishra said, the HDAC inhibitors reset the histone modifications, reducing or eliminating the lupus condition. "If we modify the histone with a drug, we can also cure the lupus."

The work is part of the effort to unravel a number of the mysteries of lupus: Why does it occur in one identical twin and usually not the other, though they have exactly the same DNA? Why does lupus strike predominantly women? Why does it abruptly strike some while they are still young, others in middle age and others not until old age?

Mishra said the proteins expressed through the histones vary between healthy individuals and lupus patients. There also is variation among lupus patients. These differences may explain why some lupus patients develop kidney disease and others do not, or other symptoms like arthritis or skin disorders.

Prior to this research, the prevailing theory is that the variations were due to differences in genetic background and the influences of the environment. Mishra’s mouse models are all genetically identical, yet variations exist. "They are the same, but different," he said. Histone changes could explain these differences. Mishra said that in addition to the use of HDAC inhibitors, combination treatment for lupus might also include a methylase inhibitor. But those don’t exist yet.

Lupus is a chronic inflammatory autoimmune disorder that affects the skin, kidneys, joints, lungs, blood and central nervous system. Systemic lupus affects more than 1 million Americans, mostly women.

Mishra’s coauthors are Benjamin A. Garcia, Ph.D., Scott A. Busby, Ph.D., Jeffrey Shabanowitz, Ph.D., and Donald F. Hunt, Ph.D., of the University of Virginia, Charlottesville.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>