Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutations in the BRAF gene predict sensitivity to a novel class of cancer drugs

07.11.2005


A team of researchers led by scientists at Memorial Sloan-Kettering Cancer Center have discovered that a new class of drugs -- now in early stage clinical trials -- work best in patients with mutations in the BRAF gene. BRAF is a protein that plays a central role in the growth and survival of cancer cells and is mutated in the majority of patients with melanoma and in a minority of patients with colon, breast, and lung cancers. The findings, available in an advance online publication of Nature, represent a potential targeted therapy tailored for patients whose tumors contain this mutation.



The researchers found that drugs that inhibit a protein called MEK selectively inhibited the growth of cancer cells lines and tumors that have a mutated BRAF gene. One of these drugs, PD0325901 (developed by Pfizer Research and Development), is now being tested in clinical trials of patients with melanoma, colon, breast, and lung cancers. In addition, by re-analyzing the data on more than 42,000 compounds tested by the National Cancer Institute against a panel of 60 cancer cell lines, the investigators were able to identify a small number of other compounds that also selectively inhibit tumors that have the BRAF mutation. While the mechanism of action of some of these compounds has yet to be determined, several of the most effective compounds were also inhibitors of the MEK protein.

"We find that all tumors with the BRAF mutation and some with the RAS mutation are sensitive to drugs that inhibit MEK," explained Dr. Neal Rosen, Professor of Medicine and a member and laboratory head in the Molecular Pharmacology and Chemistry Program at Memorial Sloan-Kettering and the study’s senior author. "Translating these findings into a strategy for treating patients whose tumors are dependent upon this specific genetic change is the next step, and such clinical trials are now ongoing."


"The BRAF mutation was first identified by a consortium of investigators searching for proteins that are frequently mutated in human cancer," said Dr. David Solit, the study’s first author and a medical oncologist at Memorial Sloan-Kettering who is also a member of Dr. Rosen’s laboratory. This project, an outgrowth of the Human Genome Project, called the Cancer Genome Project, has the goal of identifying the causative mutations that cause human cancers.

"This represents what we believe will be the first of a series of new drugs that specifically target cancer cells that contain mutations identified by the Cancer Genome sequencing effort," said Dr. Solit. "The hope is that these new targeted therapies will be more effective and less toxic than traditional chemotherapies."

The study’s other researchers were Christine A. Pratilas, Ayana Sawai, Andrea Basso, Qing Ye, Jose M. Lobo, and Yuhong She, all of Memorial Sloan-Kettering; Drs. Levi A.Galloway, Gad Getz, Todd R. Golub, and William R. Sellers of Dana-Farber Cancer Institute and Broad Institute of MIT and Harvard; Dr. Iman Osman of New York University Medical College; and Dr. Judith Sebolt-Leopold of Pfizer Global Research and Development.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>