Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Sensation into Perception

07.11.2005


Perceiving a simple touch may depend as much on memory, attention, and expectation as on the stimulus itself, according to new research from Howard Hughes Medical Institute (HHMI) international research scholar Ranulfo Romo and his colleague Victor de Lafuente. The scientists found that monkeys’ perceptions of touch match brain activity in the frontal lobe, an area that assimilates many types of neural information.



Romo and de Lafuente, both of the Institute of Cellular Physiology at the National Autonomous University of Mexico, report their results in the December 2005 issue of the journal Nature Neuroscience, published early online on November 6, 2005.

One of neuroscience’s most difficult questions concerns how the brain converts simple sensory inputs to complete perceptual experiences. Many neuroscientists assume that perceptions arise in the sensory cortices, which are the first areas of the brain to process information coming in from sense organs, Romo said. Some recent research, however, has hinted that activity in other parts of the brain may also contribute to sensory perception.


When it comes to the sense of touch, a stimulus at the skin triggers an impulse that travels first to an area at the top of the brain called the primary somatosensory cortex (S1). The information then moves to other parts of the brain, where it can contribute to memory, decision-making, and motor outputs.

To explore what regions of the brain contribute to sensory perception, Romo and de Lafuente analyzed neural activity associated with the sense of touch in macaque monkeys. The researchers touched the monkeys’ fingertips with a painless stimulus that sometimes vibrated and sometimes did not. The intensity of the vibration varied, so sometimes it was easy for the monkeys to tell that the vibration was on, while other times the vibrations were so weak that the monkeys couldn’t always detect them. The monkeys were trained to indicate to the researchers whether the stimulus was vibrating or still, and they were rewarded with treats when they were correct.

The scientists found that activity in S1 neurons, where touch information first arrives, correlated directly with the strength of the stimulus; when the strength of the vibrations was more intense, the S1 neurons’ fired more rapidly. However, these neurons’ activity did not correlate with the monkeys’ behavioral responses. Their firing rates were directly associated with the stimulus intensity, whether the monkeys consciously felt and responded to the stimulus or not.

Romo and de Lafuente also recorded neuronal activity in the medial premotor cortex (MPC), a region of the brain’s frontal lobe that is known to be involved in making decisions about sensory information. Activity here did mirror the monkeys’ subjective responses to the vibrating probe. MPC neurons responded in an all-or-none manner; they fired when the monkey thought the vibrations were there—even if they weren’t—and they didn’t fire when the monkey thought the vibrations were absent—even if they were actually occurring.

These results indicate that the monkeys’ perceptions arise not from brain activity in the sensory cortex itself, but from activity in the frontal lobe MPC, Romo said.

The MPC “is very interesting,” Romo said. “Apparently, it’s able to pull information from memory and from the sensory areas, and also link this activity to the motor apparatus” so that the monkeys can physically indicate what they think is happening.

To clinch the MPC’s association with the monkeys’ perceptions, the researchers used an electrode to apply weak electrical stimulation to MPC neurons. They found that stimulating these neurons made the monkeys more likely to respond that they perceived a vibration, whether the vibrating stimulus was occurring or not.

Romo and de Lafuente also found that MPC neurons began to fire before the stimulus even touched the monkeys’ fingertips. Romo believes this is because the monkey is expecting the stimulus and the neurons fire in anticipation.

“I think that we do not feel with our sensory cortices,” Romo said. Perceptions instead arise in higher-order brain areas from a combination of sensation, attention, and expectation. “The sensory representation is [just] to confirm something that you have already thought.”

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>