Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Odd energy mechanism in bacteria analyzed

07.11.2005


Scientists at Oregon State University have successfully cultured in a laboratory a microorganism with a gene for an alternate form of photochemistry – an advance that may ultimately help shed light on the ecology of the world’s oceans.



The microorganism is SAR11, the smallest free living cell known and probably the most abundant organism in the seas. By being able for the first time to study the SAR11 "proteorhodopsin" gene in a laboratory, researchers will be able to better understand how it is activated, its role in the life and survival of SAR11, and how it affects ocean ecology. The findings are being published today in the journal Nature.

Surprisingly, the SAR11 bacteria continued to grow normally whether or not there was light available - indicating to OSU researchers that the cell does not require this energy producing mechanism in normal conditions. It’s possible, they said, that this alternate form of photochemistry serves as a "backup" system to provide energy to the cells when they face starvation in the open ocean, which often has very limited nutrients.


"It’s exciting to learn more about another form of photochemistry that does not use chlorophyll", said Stephen Giovannoni, a professor of microbiology at OSU. "This proteorhodopsin gene, however, seems to have a subtle role in the life and survival of SAR11, and appears to be an auxiliary system to aid cell survival."

The level of interest in SAR11 is high, researchers say, because it dominates microbial life in the oceans, survives where most other cells would die, and plays a major role in the cycling of carbon on Earth. These bacteria may have been thriving for a billion years or more, but they have the smallest genetic structure of any independent cell and were only first discovered by OSU scientists in 1990.

Although tiny, because of their huge numbers SAR11 plays a major role in the planet’s carbon cycle as a consumer of organic carbon. Its main energy generating system is the respiration of organic carbon, producing carbon dioxide and water in the process.

Oxygen in the Earth’s atmosphere was largely created and is maintained by photosynthesis, in which plants convert sunlight into biological energy through a process that requires chlorophyll. In the oceans, SAR11 is a partner in this process, recycling organic carbon and producing the nutrients needed for the algae that produce about half of the oxygen that enters Earth’s atmosphere every day.

The carbon cycle ultimately affects all plant and animal life on Earth.

However, it’s now clear that SAR11 has its own mechanism to use sunlight energy that does not involve chlorophyll. Rather, it uses retinal, the same protein used by the eyes of animals and humans to detect light, and serves as a "proton pump" to energize the cell membrane. Proteorhodopsin was only discovered in 2000, but until now, it had not been found in a living organism. It’s still not totally clear, Giovannoni said, how this energy producing mechanism benefits the cell.

"When we turned the lights off, there was no mechanism for the proteorhodopsin gene to produce energy, but that didn’t seem to make any difference in the growth rate of SAR11," Giovannoni said. "So we know that under normal conditions this alternate form of energy production is not required. This system may be there for emergencies. But it may still be very important to ocean life, and that’s what we need to find out more about."

Steve Giovannoni | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>