Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Odd energy mechanism in bacteria analyzed

07.11.2005


Scientists at Oregon State University have successfully cultured in a laboratory a microorganism with a gene for an alternate form of photochemistry – an advance that may ultimately help shed light on the ecology of the world’s oceans.



The microorganism is SAR11, the smallest free living cell known and probably the most abundant organism in the seas. By being able for the first time to study the SAR11 "proteorhodopsin" gene in a laboratory, researchers will be able to better understand how it is activated, its role in the life and survival of SAR11, and how it affects ocean ecology. The findings are being published today in the journal Nature.

Surprisingly, the SAR11 bacteria continued to grow normally whether or not there was light available - indicating to OSU researchers that the cell does not require this energy producing mechanism in normal conditions. It’s possible, they said, that this alternate form of photochemistry serves as a "backup" system to provide energy to the cells when they face starvation in the open ocean, which often has very limited nutrients.


"It’s exciting to learn more about another form of photochemistry that does not use chlorophyll", said Stephen Giovannoni, a professor of microbiology at OSU. "This proteorhodopsin gene, however, seems to have a subtle role in the life and survival of SAR11, and appears to be an auxiliary system to aid cell survival."

The level of interest in SAR11 is high, researchers say, because it dominates microbial life in the oceans, survives where most other cells would die, and plays a major role in the cycling of carbon on Earth. These bacteria may have been thriving for a billion years or more, but they have the smallest genetic structure of any independent cell and were only first discovered by OSU scientists in 1990.

Although tiny, because of their huge numbers SAR11 plays a major role in the planet’s carbon cycle as a consumer of organic carbon. Its main energy generating system is the respiration of organic carbon, producing carbon dioxide and water in the process.

Oxygen in the Earth’s atmosphere was largely created and is maintained by photosynthesis, in which plants convert sunlight into biological energy through a process that requires chlorophyll. In the oceans, SAR11 is a partner in this process, recycling organic carbon and producing the nutrients needed for the algae that produce about half of the oxygen that enters Earth’s atmosphere every day.

The carbon cycle ultimately affects all plant and animal life on Earth.

However, it’s now clear that SAR11 has its own mechanism to use sunlight energy that does not involve chlorophyll. Rather, it uses retinal, the same protein used by the eyes of animals and humans to detect light, and serves as a "proton pump" to energize the cell membrane. Proteorhodopsin was only discovered in 2000, but until now, it had not been found in a living organism. It’s still not totally clear, Giovannoni said, how this energy producing mechanism benefits the cell.

"When we turned the lights off, there was no mechanism for the proteorhodopsin gene to produce energy, but that didn’t seem to make any difference in the growth rate of SAR11," Giovannoni said. "So we know that under normal conditions this alternate form of energy production is not required. This system may be there for emergencies. But it may still be very important to ocean life, and that’s what we need to find out more about."

Steve Giovannoni | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Enzyme with surprising dual function
24.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Flexibility and arrangement - the interaction of ribonucleic acid and water
24.01.2018 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>