Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique offers new view of dynamic biological landscape

04.11.2005


A new technique for analyzing the network of genetic interactions promises to change how researchers study the dynamic biological landscape of the cell. The technology, which is called epistatic mini array profiles (E-MAP), has already been used to assign new functions to known genes, to uncover the roles of previously uncharacterized proteins, and to define how biochemical pathways and proteins interact with one another.



E-MAP will enable new understanding of how genes and proteins function in the cell, said Jonathan S. Weissman, a Howard Hughes Medical Institute (HHMI) investigator at the University of California, San Francisco (UCSF) and leader of the team that developed the technique. For example, E-MAPs of human gene interactions could enable researchers to optimize drug treatments to patients’ genetic backgrounds. It might also be possible to use E-MAP to develop effective combinations of antiviral drugs that target proteins produced by interacting genes. Such a strategy would help to prevent these genes from acting together to compensate for an attack on just one protein, said Weissman.

The researchers, led by Weissman, Maya Schuldiner, a post-doctoral fellow working in his lab, and Nevan Krogan at the University of Toronto, described initial studies of E-MAP in yeast in the November 4, 2005, issue of the journal Cell. Weissman and his colleagues at UCSF collaborated on the studies with researchers at the University of Toronto.


Previous techniques for analyzing epistatic interactions -- how the activity of one gene affects that of another -- involved altering single genes and analyzing their impact on growth in combination with all other genes in the yeast genome. "The one-to-one method has been an extremely powerful way of studying biological systems," said Weissman. "But we wanted to approach such analyses in a systematic way and to use the new generation of high-throughput technology to quantitatively explore large numbers of epistatic genetic interactions at once."

The E-MAP technique consists of selectively "dialing down" the activity of a multitude of gene pairs and comparing the effects of those changes to those that result when each gene is dialed down individually. Many genes’ activity could be reduced by eliminating them entirely, but for the subset of genes that are essential for yeast growth -- whose complete deletion would kill the cell -- the researchers invented a high throughput technique to manipulate the half-life of their messenger RNA (mRNA). Since mRNA is a genetic intermediate during the conversion of a gene to protein, reducing its lifespan by mutating the mRNA message lowers the amount of protein the cell can produce. The group called this approach "decreased abundance by mRNA perturbation" (DAmP).

"The DAmP technique gave us a way of lowering the abundance of a target gene’s messenger RNA while maintaining its natural regulation," said Weissman. "Most of the mRNAs in yeast have half-lives of ten minutes or so, but our alterations destabilized them to have only a half-life of a couple of minutes. Consequently, they produce five- to ten-fold less protein," he said.

In developing E-MAP, the researchers faced a significant hurdle: Even yeast’s relatively modest 6,000 genes would generate nearly 20 million possible gene pairs that would need to be tested. To narrow the number of possible interactions, they adopted a strategy called neighborhood clustering, which restricts analysis to genes that have related functions and that also cluster in one place in the cell. In the Cell paper, they applied the E-MAP technique to a "mini array" of 442 yeast genes that define a biological pathway called the early secretory pathway. This compartmentalized, interconnected pathway synthesizes and regulates lipids and secreted proteins in yeast.

Weissman and his colleagues also needed a way to quantify the epistatic effects of interacting mutant genes on the cells’ viability. Since yeast form round colonies when grown in culture dishes, they could measure the mutant cells’ colony size in an automated fashion and use that to calculate their growth rates. To determine epistatic effects, they compared the growth rate for each cell containing mutations in two genes with the growth rate of mutant cells carrying mutations in only one of those genes.

"The analysis of these epistatic interactions gave us a unique and coherent perspective on the function and structure of this network in yeast," Weissman explained. "And it also proved a great way to find new gene functions or to figure out how known genes were functioning and the processes they were likely to be involved in. But on top of that, we could identify groups of genes that were acting in a coherent way, to produce protein complexes. And then on a more global level, we could see how the different processes were interacting with each other.

"By contrast, in classical genetics, you begin with a process you’re interested in -- for example secretion -- and look for all the genes that affect secretion. It’s a productive approach, but it’s very process oriented," he said. "You might find a given gene that’s involved in secretion, but it doesn’t tell you about the many other processes it could be involved in.

With the E-MAP approach, however, the researchers start with the gene and ask about all the processes that it affects. "It gives you a less hypothesis-biased, more objective way of looking at the structure of biological systems," Weissman said.

In future studies, Weissman and his colleagues plan to develop better quantitative measures of the effects of epistatic interactions and to extend their technique to other organisms, ultimately to humans.

In addition to offering important basic insights into the roles of proteins and genes, E-MAPs will also contribute to understanding evolutionary processes. "In evolutionary theory, the structure of epistatic gene interactions is critical," he said. "To understand how different variations, or alleles, of a gene affect an organism’s evolution, you have to understand for each gene how it’s affected by the genetic background in which it operates."

Moving beyond the theoretical, E-MAPs might also have a role in clinical applications. "In the field of pharmacogenomics, clinicians seek to tailor drug therapies to an individual’s genetic makeup," said Weissman. "They are essentially asking the very questions about epistatic interactions that E-MAPs can answer. They want to know whether if they inhibit a protein -- in this case with a drug instead of knocking down the mRNA -- how other genes interact with that inhibition."

Knowing the interactions a target gene participates in could also enable clinicians to predict the variability of effects of a drug among different people. Understanding such interactions could also give pharmaceutical researchers clues to the magnitude of possible side effects of drugs under development.

The development of combination drug therapies, such as for cancer or viruses, could also benefit from the E-MAP approach. "In such cases, clinicians want to know whether -- if drugs that inhibit each of two proteins slow down a cancer or virus -- the two proteins interact epistatically, such that inhibiting both produces a much greater effect than the sum of the two," he said.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>