Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin molecular scissors link creation of microRNAs with gene-silencing

04.11.2005


New insights into vital genome regulation strategy provided



One of the body’s primary strategies for regulating its genome is a kind of targeted gene silencing orchestrated by small molecules called microRNAs, or miRNAs. First observed only a few years ago, these molecules appear to inactivate messenger RNA, itself responsible for translating genes into proteins. Scientists have been eager to know more about miRNAs, clearly important players on the genetic field despite having gone unnoticed for so long. How are they produced? And how do they work?

In a series of studies published over the past year, a research team at The Wistar Institute has provided considerable insight into the world of miRNAs. In their first study, which appeared last year in Nature, they identified a two-protein complex, called the microprocessor, which controls the earliest steps in the creation of miRNAs in the cell nucleus. In their next study, published in Nature earlier this year, the Wistar group described a three-protein complex that picks up the process in the cell cytoplasm and carries it through to the maturation of the finished miRNAs.


Now, in new findings published online November 3 in Cell, Wistar professor Ramin Shiekhattar, Ph.D., and his colleagues report that the three-protein complex has been identified as RISC, a previously glimpsed but ill-defined molecular complex known to be involved in gene silencing. RISC, the new study demonstrates, not only oversees production of miRNAs, as described in the earlier study this year, but is also responsible for miRNA specificity in silencing particular messenger RNAs.

In RISC, two of the three components, Dicer and Argonaute 2, are enzymes bound together by the third member, TRBP. Dicer cuts double-stranded precursor molecules shaped like hairpins into pairs of short single-stranded miRNAs – in essence, nipping off the bend in the pin. RISC then unzips the two single-stranded miRNAs from each other and identifies and holds one as a guide to help it find the specific messenger RNA to be inactivated. Using complementarity to match the guide miRNA to a particular length of its target messenger RNA, Dicer and TRBP then hand over the messenger RNA for cutting by Argonaute 2. Still holding the guide miRNA, RISC then scouts for additional copies of its target messenger RNA to cut. The cutting destroys the messenger RNA, effectively silencing the gene from which it was transcribed.

"The two enzymes in the complex are like two scissors working together in a concerted fashion, connected and coordinated by the third member of the complex," Shiekhattar explains.

Another scientific question surrounding RISC was also resolved by the current study. Some investigators had theorized that the activity of RISC required ATP for energy. ATP, or adenosine triphosphate, is a molecule used to store and release energy for tasks throughout the body.

"The work of RISC is being accomplished with no energy requirement whatsoever," Shiekhattar says. "All of the activity – the separation of the strands, the multiple cutting steps, everything – is being done in the absence of any energy use."

Instead, he says, the different molecules involved have stronger and weaker affinities for each other that govern their stepwise associations and disassociations as the process unfolds.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>