Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twin molecular scissors link creation of microRNAs with gene-silencing

04.11.2005


New insights into vital genome regulation strategy provided



One of the body’s primary strategies for regulating its genome is a kind of targeted gene silencing orchestrated by small molecules called microRNAs, or miRNAs. First observed only a few years ago, these molecules appear to inactivate messenger RNA, itself responsible for translating genes into proteins. Scientists have been eager to know more about miRNAs, clearly important players on the genetic field despite having gone unnoticed for so long. How are they produced? And how do they work?

In a series of studies published over the past year, a research team at The Wistar Institute has provided considerable insight into the world of miRNAs. In their first study, which appeared last year in Nature, they identified a two-protein complex, called the microprocessor, which controls the earliest steps in the creation of miRNAs in the cell nucleus. In their next study, published in Nature earlier this year, the Wistar group described a three-protein complex that picks up the process in the cell cytoplasm and carries it through to the maturation of the finished miRNAs.


Now, in new findings published online November 3 in Cell, Wistar professor Ramin Shiekhattar, Ph.D., and his colleagues report that the three-protein complex has been identified as RISC, a previously glimpsed but ill-defined molecular complex known to be involved in gene silencing. RISC, the new study demonstrates, not only oversees production of miRNAs, as described in the earlier study this year, but is also responsible for miRNA specificity in silencing particular messenger RNAs.

In RISC, two of the three components, Dicer and Argonaute 2, are enzymes bound together by the third member, TRBP. Dicer cuts double-stranded precursor molecules shaped like hairpins into pairs of short single-stranded miRNAs – in essence, nipping off the bend in the pin. RISC then unzips the two single-stranded miRNAs from each other and identifies and holds one as a guide to help it find the specific messenger RNA to be inactivated. Using complementarity to match the guide miRNA to a particular length of its target messenger RNA, Dicer and TRBP then hand over the messenger RNA for cutting by Argonaute 2. Still holding the guide miRNA, RISC then scouts for additional copies of its target messenger RNA to cut. The cutting destroys the messenger RNA, effectively silencing the gene from which it was transcribed.

"The two enzymes in the complex are like two scissors working together in a concerted fashion, connected and coordinated by the third member of the complex," Shiekhattar explains.

Another scientific question surrounding RISC was also resolved by the current study. Some investigators had theorized that the activity of RISC required ATP for energy. ATP, or adenosine triphosphate, is a molecule used to store and release energy for tasks throughout the body.

"The work of RISC is being accomplished with no energy requirement whatsoever," Shiekhattar says. "All of the activity – the separation of the strands, the multiple cutting steps, everything – is being done in the absence of any energy use."

Instead, he says, the different molecules involved have stronger and weaker affinities for each other that govern their stepwise associations and disassociations as the process unfolds.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>