Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New and sharper X-rays of cell’s ribosome could lead to better antibiotics

04.11.2005


A new, sharper picture of the nano-machine that translates our genetic program into proteins promises to help researchers explain how some types of antibiotics work and could lead to the design of better ones.



The high-resolution snapshots of the bacterial ribosome were captured by scientists at the University of California, Berkeley, and Lawrence Berkeley National Laboratory (LBNL) with the lab’s Advanced Light Source, which generates intense beams of X-rays that can reveal unprecedented structural detail of such large and complex molecules.

The new, high-resolution data on the intact ribosome allows researchers to build more detailed and more realistic models of the ribosome that until now were impossible with the "fuzzy pictures" available.


While sharp images of the two main pieces of the ribosome have already provided great insight into how specific antibiotics work, many antibiotics, such as the aminoglycosides, only interfere with the entire, fully assembled molecular machine.

"Many antibiotics target only the intact machine, disrupting messenger RNA decoding or movement," said lead author Jamie Cate, assistant professor of chemistry and of molecular and cell biology at UC Berkeley and a staff scientist in the Physical Biosciences Division at LBNL. "We are now in a position to look at some of these drugs and discover things that haven’t been known before."

Cate, a member of the California Institute for Quantitative Biomedical Research (QB3) at UC Berkeley, and his colleagues report the detailed structure of the ribosome from Escherichia coli, the common intestinal bacteria, in the Nov. 4 issue of Science.

The ribosome, about 21 to 25 nanometers across, is the original nanomachine, taking genetic information relayed by messenger RNA, decoding it and spitting out proteins. Ribosomes are dispersed in the hundreds of thousands throughout the cell, and in some highly active cells, ribosomes are responsible for producing millions of proteins per minute.

Ribosomes are found in all organisms, ranging from bacteria to humans, and probably arose nearly 2 billion years ago. They have changed so little through evolution that a bacterial ribosome can often translate human genes into protein. Some people suspect that ribosomes, which at their core consist of ribonucleic acid (RNA), a sister of the DNA that comprises our genes, arose when RNA, not DNA, carried our genetic dowry.

Because of its importance to life, and the fact that important drugs target the ribosome, it has received lots of attention. Only four years ago, Cate was part of a team that published a picture of the ribosome with a resolution of 5.5 Angstroms, where an Angstrom, about the size of a hydrogen atom, is one-tenth of a nanometer. The new images have a resolution of 3.5 Angstroms, allowing Cate and his colleagues to see the individual nucleotides in the RNA strands of the ribosome and the amino-acid backbones of the proteins that surround the RNA core.

Both the old and new images were obtained through X-ray crystallography using Advanced Light Source beamlines, which provide extremely bright X-ray sources. Having the light source in his backyard, Cate said, has made it easier to get the best crystallographic picture with the sharpest three-dimensional detail. He and his laboratory colleagues grow crystals of ribosomes, check their quality in the light source, then tweak the crystals and try again.

"We’ve burned through thousands of crystals in the last five years," he said.

The researchers obtained two high-resolution snapshots of the intact E. coli ribosome and compared them with a wide range of conformations of other ribosomes. These other data came from lower-resolution X-ray crystallographyic images of Thermus thermophilus and E. coli ribosomes, plus electron microscopy of E. coli, yeast and mammalian ribosomes. Together, they yielded what Cate calls "global snapshots" and allowed him and his colleagues to deduce how individual parts of the ribosome function during the translocation process.

What the new structure shows so far is how the two large pieces of the ribosome bend, ratchet and rotate as the ribosome goes through the repetitive process of protein manufacturing.

The "small" subunit of the ribosome first recognizes and latches onto the messenger RNA (mRNA), which contains a copy of part of the chromosomal DNA. Once the small subunit finds the start position, the "large" subunit moves in and latches on, clamping the mRNA between them. The combined machine slides along the mRNA, reading each three-letter codon, matching this code to the appropriate amino acid, and then adding that amino acid - one of 20 possible building blocks - to the lengthening protein chain.

As this translation takes place, transfer RNA (tRNA) constantly brings in amino acid building blocks, while energy-supplying molecules in the form of GTP (guanosine triphosphate) cycle through.

They found that after the bond - called a peptide bond - forms between the growing chain and the newly added amino acid, the small subunit ratchets with respect to the large subunit. Then the head of the small subunit swivels in preparation for shifting the mRNA forward by one codon. At the same time, a groove opens that allows the mRNA to actually move and the tRNA, depleted of its amino acid, to float away.

Then, the small subunit reverses its motions, resets, and is ready to add the next amino acid. This picture of translocation - ratcheting, swiveling, opening the groove, then reversing these three steps - is repeated 10 to 20 times each second in bacteria.

Based on the researchers’ analysis of the new data, Cate said that it appears, also, that the helical RNA in the ribosome acts as a spring to withstand the stress of these reversible swivels. Also, the ribosome harbors an astounding number of positive magnesium ions - hundreds in all - that apparently neutralize the highly negative charge of the RNA. Without these magnesium ions, Cate said, the repulsion of the RNA’s negative charge would blow the ribosome apart. Some of the magnesium ions form a salty liquid at the interface between the large and small subunits of the ribosome, perhaps lubricating the machine.

These and other hypotheses need further exploration, he said.

"All the interactions we see have been seen before at lower resolution, but it was not clear how to interpret them," he said. "It took these high-resolution studies to coalesce our ideas."

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>