Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease-causing protein protects against nerve damage in Parkinson’s disease

04.11.2005


Researchers at UT Southwestern Medical Center have discovered that a protein associated with causing neurodegenerative conditions may, when appearing in normal amounts, actually protect against neurodegeneration.



The findings, appearing in today’s issue of the journal Cell, have surprised the researchers, because an excess of the same specific protein - alpha-synuclein - causes Parkinson’s disease.

"It’s the first time that anyone has shown that synuclein has any positive function at all in the body, and this is important because it’s been known to be involved in neurodegeneration," said Dr. Thomas Südhof, senior author of the study and director of the Center for Basic Neuroscience. Dr. Südhof also is an investigator in the Howard Hughes Medical Institute.


The key to their findings was determining the interaction between alpha-synuclein and another protein - cysteine-string-protein-alpha, or CSP-alpha. The researchers’ investigation involved several strains of mutant mice, which produced differing amounts of CSP-alpha or alpha-synuclein.

CSP-alpha is a "co-chaperone," meaning that it helps other proteins fold into their normal shapes, a vital process in the instantaneous reactions that occur at terminals of a nerve cell. When mutant mice lack only CSP-alpha, they appear normal for their first three weeks, then undergo rapid nerve degeneration and die at one to four months of age.

When mutant mice lack only alpha-synuclein, on the other hand, they continue to appear normal as they age, indicating that alpha-synuclein might not be essential in healthy nerve cells.

But mice that have been bred to produce an excess of human alpha-synuclein undergo a slowly progressing nerve degeneration resembling Parkinson’s.

The researchers bred mice lacking CSP with mice with excessive human synuclein in their brains, expecting to see a faster descent into the Parkinson’s-like symptoms in the offspring. Instead, they produced apparently healthy animals. In their terms, the alpha-synuclein "rescued" the mice from the harmful effects of lacking CSP-alpha.

The results were "exactly the opposite of what I expected," said Dr. Sreeganga Chandra, instructor in the Center for Basic Neuroscience and lead author of the study. "The rescued animals can live for one year or longer."

The researchers also bred mice that produced neither CSP-alpha nor alpha-synuclein and found they suffered neurodegeneration faster than mice just lacking CSP-alpha - another sign that alpha-synuclein protects against a lack of CSP-alpha.

In humans, clumps of alpha-synuclein, called Lewy bodies, are found in the brain cells of patients with Parkinson’s, Alzheimer’s and other degenerative diseases. The researchers speculate that the formation of Lewy bodies may take alpha-synuclein out of circulation in cells, thus removing its protective action.

Testing this hypothesis would involve looking for mutations in the genes for CSP-alpha or alpha-synuclein in patients with neurodegenerative diseases. "Trying to understand what’s going on in a dying brain is very difficult," said Dr. Südhof, who directs the Gill Center for Research on Brain Cell Communication and the C. Vincent Prothro Center for Research in Basic Neuroscience.

The researchers also found that alpha-synuclein doesn’t bind to or react with the same proteins that CSP-alpha does, so it doesn’t simply act as a substitute. However, both molecules bind to the membranes of synaptic vesicles - small spheres that contain the nerve cell’s neurotransmitters, chemicals that carry signals between brain cells - indicating that they both act at the vesicles’ surface.

"There’s a pathway, but we don’t really know all the players in this pathway," Dr. Chandra said.

Other researchers involved in the work were Gilbert Gallardo, student research assistant at the Center for Basic Neuroscience, and researchers from Germany and Spain.

The work was supported in part by the National Institutes of Health, the American Parkinson Disease Association and the Spanish Ministry of Education.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>