Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease-causing protein protects against nerve damage in Parkinson’s disease

04.11.2005


Researchers at UT Southwestern Medical Center have discovered that a protein associated with causing neurodegenerative conditions may, when appearing in normal amounts, actually protect against neurodegeneration.



The findings, appearing in today’s issue of the journal Cell, have surprised the researchers, because an excess of the same specific protein - alpha-synuclein - causes Parkinson’s disease.

"It’s the first time that anyone has shown that synuclein has any positive function at all in the body, and this is important because it’s been known to be involved in neurodegeneration," said Dr. Thomas Südhof, senior author of the study and director of the Center for Basic Neuroscience. Dr. Südhof also is an investigator in the Howard Hughes Medical Institute.


The key to their findings was determining the interaction between alpha-synuclein and another protein - cysteine-string-protein-alpha, or CSP-alpha. The researchers’ investigation involved several strains of mutant mice, which produced differing amounts of CSP-alpha or alpha-synuclein.

CSP-alpha is a "co-chaperone," meaning that it helps other proteins fold into their normal shapes, a vital process in the instantaneous reactions that occur at terminals of a nerve cell. When mutant mice lack only CSP-alpha, they appear normal for their first three weeks, then undergo rapid nerve degeneration and die at one to four months of age.

When mutant mice lack only alpha-synuclein, on the other hand, they continue to appear normal as they age, indicating that alpha-synuclein might not be essential in healthy nerve cells.

But mice that have been bred to produce an excess of human alpha-synuclein undergo a slowly progressing nerve degeneration resembling Parkinson’s.

The researchers bred mice lacking CSP with mice with excessive human synuclein in their brains, expecting to see a faster descent into the Parkinson’s-like symptoms in the offspring. Instead, they produced apparently healthy animals. In their terms, the alpha-synuclein "rescued" the mice from the harmful effects of lacking CSP-alpha.

The results were "exactly the opposite of what I expected," said Dr. Sreeganga Chandra, instructor in the Center for Basic Neuroscience and lead author of the study. "The rescued animals can live for one year or longer."

The researchers also bred mice that produced neither CSP-alpha nor alpha-synuclein and found they suffered neurodegeneration faster than mice just lacking CSP-alpha - another sign that alpha-synuclein protects against a lack of CSP-alpha.

In humans, clumps of alpha-synuclein, called Lewy bodies, are found in the brain cells of patients with Parkinson’s, Alzheimer’s and other degenerative diseases. The researchers speculate that the formation of Lewy bodies may take alpha-synuclein out of circulation in cells, thus removing its protective action.

Testing this hypothesis would involve looking for mutations in the genes for CSP-alpha or alpha-synuclein in patients with neurodegenerative diseases. "Trying to understand what’s going on in a dying brain is very difficult," said Dr. Südhof, who directs the Gill Center for Research on Brain Cell Communication and the C. Vincent Prothro Center for Research in Basic Neuroscience.

The researchers also found that alpha-synuclein doesn’t bind to or react with the same proteins that CSP-alpha does, so it doesn’t simply act as a substitute. However, both molecules bind to the membranes of synaptic vesicles - small spheres that contain the nerve cell’s neurotransmitters, chemicals that carry signals between brain cells - indicating that they both act at the vesicles’ surface.

"There’s a pathway, but we don’t really know all the players in this pathway," Dr. Chandra said.

Other researchers involved in the work were Gilbert Gallardo, student research assistant at the Center for Basic Neuroscience, and researchers from Germany and Spain.

The work was supported in part by the National Institutes of Health, the American Parkinson Disease Association and the Spanish Ministry of Education.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>